686 research outputs found

    Design and realization for radar cross section reduction of patch antennas using shorted stubs metamaterial absorbers

    Get PDF
    This thesis is devoted to analyzing of the Radar Cross Section (RCS) of rectangular patch antenna using Metamaterial Absorber (MMA) and the analysis of its reducing techniques. The addressed theme has a great complexity and it covers various areas that include designing and optimization of target geometrical model of rectangular patch antenna structures and making it compatible with respect to metamaterial geometry. Analyses have been made to optimize and validate the structure performances that include numerical methods for electromagnetic field computation, MMA behavior, characterization, extraction of parameters, antenna radiation performance analyses, simulation, fabrication, testing, and optimization with back validating the designs. The MMA structure finds its applications in antenna designing for the reduction of Monostatic and Bistatic RCS in stealth platform for lower detectable objects. However, there is still more emphasis needed to devote for in-band frequency response for low RCS of the antenna. Therefore, making these assumptions, we have been proposing novel designs of single-band, dual-band, and triple-band MMA structures. These structures provide significant scattering characteristics and offering flexibility to the designer to control and tune the resonant frequency, based on the specific applications as compared to that of the other MMAs in the microwave regime of the Electromagnetic (EM) spectrum. To explore the research scope, a three dimensional Frequency Selective Surface (FSS) structure has been analyzed and its simulation responses with respect to parametric analyses have been made. The research investigation further extended to Electronic Band Gap (EBG) Structure and Defected Ground Structure (DGS). A hybrid structure of patch antenna is proposed and designed for an inset feed rectangular microstrip patch antenna operating at 2.45 GHz in the Industrial, Scientific, and Medical (ISM) band. This hybrid structure claims the size reduction, bandwidth, and gains enhancement. The main focus of this research work is limited to determine the potential and practical feasibility of MMA’s to enhance the stealth performance of rectangular patch antennas. For this purpose, Monostatic and Bistatic RCS simulation and measurements are carried out in an anechoic chamber and practical methods for Radar Cross Section reduction are discussed and analyzed

    State-of-the-Art of Metamaterials: Characterization, Realization and Applications

    Get PDF
    Metamaterials is a large family of microwave structures that produces interesting ε and μ conditions with huge implications for numerous electromagnetic applications. Following a description of modern techniques to realize epsilon-negative, mu-negative and double-negative metamaterials, this paper explores recent literature on the use of metamaterials in hot research areas such as metamaterial-inspired microwave components, antenna applications and imaging. This contribution is meant to provide an updated overview of complex microwave engineering for the generation of different types of metamaterials and their application in topical electromagnetic scenarios

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Metamaterials in Application to Improve Antenna Parameters

    Get PDF
    In recent years, the demand for miniaturization and integration of many functions of telecommunication equipment is of great interest, especially devices that are widely used in life such as mobile communication systems, smart phones, handheld tablets, GPS receivers, wireless Internet devices, etc. To satisfy this requirement, the mobile device components must be compact and capable of multifunction, multifrequency band operation. An antenna is one of them; it means that it must be conformal to the body of device, reduced in size, and capable to operating at multiple frequencies of mobile communication systems that have been operating on one, so-called smart device. Nowadays, there are many technical solutions applied in the antenna construction to satisfy of those requirements. There are microstrip antenna technology miniaturized by means of high-permittivity dielectric substrate, using shorting wall, shorting pins, some deformation, as the fractal geometry is, and others. However, these methods have disadvantage such as narrow bandwidth and low gain. A new solution that is of great interest to designers is the use of electromagnetic metamaterials for antenna design. The use of metamaterials in antenna design not only dramatically reduces the size of the antenna but can also improve other antenna parameters such as enhancing bandwidth, increasing gain, or generating multiband frequencies of antennas operation

    Resonant meta-surface superstrate for single and multifrequency dipole antenna arrays

    Get PDF
    The design of a multifrequency dipole antenna array based on a resonant meta-surface superstrate is proposed. The behavior of a single element that is closely placed to a meta-surface is experimentally investigated. The proposed meta-surface is based on resonating unit cells formed by capacitively loaded strips and split ring resonators. By tuning a dipole antenna to the pass band of the meta-surface, the physical area is effectively illuminated enhancing the radiation performance. The gain, radiation efficiency and effective area values of the whole configuration are compared to the ones obtained with a single dipole without superstrate. Radiation efficiency values for the proposed configuration of more than 80% and gain values of more than 4.5 1 dB are obtained. Based on this configuration, simulated results of a multifrequency antenna array are presented. Distinctive features of this configuration are high isolation between elements (20 dB for a distance of lambda0/4), and low back radiation

    Microwave Metamaterial Applications using Complementary Split Ring Resonators and High Gain Rectifying Reflectarray for Wireless Power Transmission

    Get PDF
    In the past decade, artificial materials have attracted considerable attention as potential solutions to meet the demands of modern microwave technology for simultaneously achieving component minimization and higher performance in mobile communications, medical, and optoelectronics applications. To realize this potential, more research on metamaterials is needed. In this dissertation, new bandpass filter and diplexer as microwave metamaterial applications have been developed. Unlike the conventional complementary split ring (CSRR) filters, coupled lines are used to provide larger coupling capacitance, resulting in better bandpass characteristics with two CSRRs only. The modified bandpass filters are used to deisgn a compact diplexer. A new CSRR antenna fed by coplanar waveguide has also been developed as another metamaterial application. The rectangular shape CSRRs antenna achieves dual band frequency properties without any special matching network. The higher resonant frequency is dominantly determined by the outer slot ring, while the lower resonant frequency is generated by the coupling between two CSRRs. The proposed antenna achieves about 35 percent size reduction, compared with the conventional slot antennas at the low resonant frequencies. As a future alternative energy solution, space solar power transmission and wireless power transmission have received much attention. The design of efficient rectifying antennas called rectennas is very critical in the wireless power transmission system. The conventional method to obtain long distance range and high output power is to use a large antenna array in rectenna design. However, the use of array antennas has several problems: the relatively high loss of the array feed networks, difficultiy in feeding network design, and antenna radiator coupling that degrades rectenna array performance. In this dissertation, to overcome the above problems, a reflectarray is used to build a rectenna system. The spatial feeding method of the reflectarray eliminates the energy loss and design complexity of a feeding network. A high gain rectifying antenna has been developed and located at the focal point of the reflectarray to receive the reflected RF singals and genterate DC power. The technologies are very useful for high power wireless power transmission applications

    Metamaterial

    Get PDF
    In-depth analysis of the theory, properties and description of the most potential technological applications of metamaterials for the realization of novel devices such as subwavelength lenses, invisibility cloaks, dipole and reflector antennas, high frequency telecommunications, new designs of bandpass filters, absorbers and concentrators of EM waves etc. In order to create a new devices it is necessary to know the main electrodynamical characteristics of metamaterial structures on the basis of which the device is supposed to be created. The electromagnetic wave scattering surfaces built with metamaterials are primarily based on the ability of metamaterials to control the surrounded electromagnetic fields by varying their permeability and permittivity characteristics. The book covers some solutions for microwave wavelength scales as well as exploitation of nanoscale EM wavelength such as visible specter using recent advances of nanotechnology, for instance in the field of nanowires, nanopolymers, carbon nanotubes and graphene. Metamaterial is suitable for scholars from extremely large scientific domain and therefore given to engineers, scientists, graduates and other interested professionals from photonics to nanoscience and from material science to antenna engineering as a comprehensive reference on this artificial materials of tomorrow

    Effect of Single Complimentary Split Ring Resonator Structure on Microstrip Patch Antenna Design

    Get PDF
    This paper had been comparing the performance of the normal patch antenna with single complimentary SRR patch antenna. Four different shapes of single complimentary split ring resonator structure had been incorporated into the microstrip patch antenna - square, circular, triangular, and rhombic. This simulation works had been done in CST Microwave Studio simulation software. The operating frequency of this antenna is 2.40 GHz for Wireless Local Area Network (WLAN) application.The parameters that considered in these works are return loss,resonant frequency, input impedance, gain, radiation pattern and bandwidth. The focusing parameter is to achieve the best gain performance that obtained from the single complimentary split ring resonator patch antenna. The addition of square SRR onto patch antenna will improve the gain from 6.334 dB to 6.508 dB
    • …
    corecore