3 research outputs found

    Antenna Modeling Using Variable-Fidelity EM Simulations and Constrained Co-Kriging

    Get PDF
    Publisher's version (útgefin grein)Utilization of fast surrogate models has become a viable alternative to direct handling of full-wave electromagnetic (EM) simulations in EM-driven design. Their purpose is to alleviate the difficulties related to high computational cost of multiple simulations required by the common numerical procedures such as parametric optimization or uncertainty quantification. Yet, conventional data-driven (or approximation) modeling techniques are severely affected by the curse of dimensionality. This is a serious limitation when it comes to modeling of highly nonlinear antenna characteristics. In practice, general-purpose surrogates can be rendered for the structures described by a few parameters within limited ranges thereof, which is grossly insufficient from the utility point of view. This paper proposes a novel modeling approach involving variable-fidelity EM simulations incorporated into the recently reported nested kriging modeling framework. Combining the information contained in the densely sampled low- and sparsely sampled high-fidelity models is realized using co-kriging. The resulting surrogate exhibits the predictive power comparable to the model constructed using exclusively high-fidelity data while offering significantly reduced setup cost. The advantages over conventional surrogates are pronounced even further. The presented modeling procedure is demonstrated using two antenna examples and further validated through the application case studies.This work was supported in part by the Icelandic Centre for Research (RANNIS) under Grant 206606051, and in part by the National Science Centre of Poland under Grant 2018/31/B/ST7/02369.Peer reviewe

    Expedited Yield Optimization of Narrow- and Multi-Band Antennas Using Performance-Driven Surrogates

    Get PDF
    Publisher's version (útgefin grein)Uncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of antenna systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the antenna characteristics. In the case of narrow- or multi-band antennas, this usually leads to frequency shifts of the operating bands. Quantifying these effects is imperative to adequately assess the design quality, either in terms of the statistical moments of the performance parameters or the yield. Reducing the antenna sensitivity to parameter deviations is even more essential when increasing the probability of the system satisfying the prescribed requirements is of concern. The prerequisite of such procedures is statistical analysis, normally carried out at the level of full-wave electromagnetic (EM) analysis. While necessary to ensure reliability, it entails considerable computational expenses, often prohibitive. Following the recently fostered concept of constrained modeling, this paper proposes a simple technique for rapid surrogate-assisted yield optimization of narrow- and multi-band antennas. The keystone of the approach is an appropriate definition of the optimization domain. This is realized by considering a few pre-optimized designs that represent the directions of the major changes of the antenna resonant frequencies and operating bands. Due to a small volume of such a domain, an accurate replacement model can be established therein using a small number of training samples, and employed to improve the antenna yield. Verification results obtained for a ring-slot antenna, a dual-band and a triple-band uniplanar dipoles indicate that the optimization process can be accomplished at low cost of a few dozen of EM simulations: 62, 74 and 132 EM simulations, respectively. Result reliability is validated through comparisons with EM-based Monte Carlo simulations.This work was supported in part by the Icelandic Centre for Research (RANNIS) under Grant 206606051, in part by the National Science Centre of Poland under Grant 2017/27/B/ST7/00563, and in part by the Abu-Dhabi Department of Education and Knowledge (ADEK) Award for Research Excellence, in 2019, under Grant AARE19-245."Peer Reviewed

    Application of machine learning-assisted global optimization for improvement in design and performance of open resonant cavity antenna

    Get PDF
    Open resonant cavity antenna (ORCA) and its recent advances promise attractive features and possible applications, although the designs reported so far are solely based on the classical electromagnetic (EM) theory and general perception of EM circuits. This work explores machine learning (ML)-assisted antenna design techniques aiming to improve and optimize its major radiation parameters over the maximum achievable operating bandwidth. A state-of-the-art method e.g., parallel surrogate model-assisted hybrid differential evolution for antenna synthesis (PSADEA) has been exercised upon a reference ORCA geometry revealing a fascinating outcome. This modifies the shape of the cavity which was not predicted by EM-based analysis as well as promising significant improvement in its radiation properties. The PSADEA-generated design has been experimentally verified indicating 3dB-11dB improvement in sidelobe level along with high broadside gain maintained above 17 dBi over the 18.5% impedance bandwidth of the ORCA. The new design has been theoretically interpreted by the theory of geometrical optics (GO). This investigation demonstrates the potential and possibilities of employing artificial intelligence (AI)-based techniques in antenna design where multiple parameters need to be adjusted simultaneously for the best possible performances
    corecore