157 research outputs found

    Antenna Modeling Using Variable-Fidelity EM Simulations and Constrained Co-Kriging

    Get PDF
    Publisher's version (útgefin grein)Utilization of fast surrogate models has become a viable alternative to direct handling of full-wave electromagnetic (EM) simulations in EM-driven design. Their purpose is to alleviate the difficulties related to high computational cost of multiple simulations required by the common numerical procedures such as parametric optimization or uncertainty quantification. Yet, conventional data-driven (or approximation) modeling techniques are severely affected by the curse of dimensionality. This is a serious limitation when it comes to modeling of highly nonlinear antenna characteristics. In practice, general-purpose surrogates can be rendered for the structures described by a few parameters within limited ranges thereof, which is grossly insufficient from the utility point of view. This paper proposes a novel modeling approach involving variable-fidelity EM simulations incorporated into the recently reported nested kriging modeling framework. Combining the information contained in the densely sampled low- and sparsely sampled high-fidelity models is realized using co-kriging. The resulting surrogate exhibits the predictive power comparable to the model constructed using exclusively high-fidelity data while offering significantly reduced setup cost. The advantages over conventional surrogates are pronounced even further. The presented modeling procedure is demonstrated using two antenna examples and further validated through the application case studies.This work was supported in part by the Icelandic Centre for Research (RANNIS) under Grant 206606051, and in part by the National Science Centre of Poland under Grant 2018/31/B/ST7/02369.Peer reviewe

    Constrained multi-objective antenna design optimization using surrogates

    Get PDF
    A novel surrogate-based constrained multi-objective optimization algorithm for simulation-driven optimization is proposed. The evolutionary algorithms usually applied in antenna design optimization typically require a large number of objective function evaluations to converge. The efficient constrained multiobjective optimization algorithm described in this paper identifies Pareto-optimal solutions satisfying the required constraints using very few function evaluations. This leads to substantial savings in time and drastically reduces the time to market for expensive antenna design optimization problems. The efficiency of the approach is demonstrated on the design of an L1-band GPS antenna. The algorithm automatically optimizes the antenna geometry, parametrized by 5 design variables with performance constraints on three objectives. The results are compared with well-established multiobjective optimization evolutionary algorithms

    Recent developments in simulation-driven multi-objective design of antennas

    Get PDF
    Publisher's version (útgefin grein)This paper addresses computationally feasible multi-objective optimization of antenna structures. We review two recent techniques that utilize the multi-objective evolutionary algorithm (MOEA) working with fast antenna replacement models (surrogates) constructed as Kriging interpolation of coarse-discretization electromagnetic (EM) simulation data. The initial set of Pareto-optimal designs is subsequently refined to elevate it to the high-fidelity EM simulation accuracy. In the first method, this is realized point-by-point through appropriate response correction techniques. In the second method, sparsely sampled high-fidelity simulation data is blended into the surrogate model using Co-kriging. Both methods are illustrated using two design examples: an ultra-wideband (UWB) monocone antenna and a planar Yagi-Uda antenna. Advantages and disadvantages of the methods are also discussed.The authors would like to thank the Computer Simulation Technology AG, Darmstadt, Germany, for making CST Microwave Studio available. This work was supported in part by the Icelandic Centre for Research (RANNIS), the Grant 130450051, and by the National Science Centre of Poland, the Grants 2013/11/B/ST7/04325 and 2014/12/ST7/00045.Peer Reviewe

    Cost-Efficient Bi-Layer Modeling of Antenna Input Characteristics Using Gradient Kriging Surrogates

    Get PDF
    Publisher's version (útgefin grein)Over the recent years, surrogate modeling has been playing an increasing role in the design of antenna structures. The main incentive is to mitigate the issues related to high cost of electromagnetic (EM)-based procedures. Among the various techniques, approximation surrogates are the most popular ones due to their flexibility and easy access. Notwithstanding, data-driven modeling of antenna characteristics is associated with serious practical issues, the primary one being the curse of dimensionality, particularly troublesome due to typically high nonlinearity of antenna responses. This limits applicability of conventional surrogates to simple structures described by a few parameters within narrow ranges thereof, which is grossly insufficient from the point of view of design utility. Many of these issues can be alleviated by the recently proposed constrained modeling techniques that restrict the surrogate domain to regions containing high-quality designs with respect to the relevant performance figures, which are identified using the pre-optimized reference designs at an extra computational effort. This paper proposes a methodology based on gradient-enhanced kriging (GEK). It enables a considerable reduction of the number of reference points required to construct the inverse surrogate (employed in surrogate model definition) by incorporating the sensitivity data into the nested kriging framework. Using two antenna examples, it is demonstrated to yield significant savings in terms of the surrogate model setup cost as compared to both conventional modeling methods and the original nested kriging.The Icelandic Centre for Research (RANNIS) under Grant 206606051, in part by the National Science Centre of Poland under Grant 2017/27/B/ST7/00563, and in part by the Abu-Dhabi Department of Education and Knowledge (ADEK) Award for Research Excellence, in 2019, under Grant AARE19-245."Peer Reviewed

    Surrogate modeling for computer aided engineering design and optimization

    Get PDF

    Multi-Fidelity Methods for Optimization: A Survey

    Full text link
    Real-world black-box optimization often involves time-consuming or costly experiments and simulations. Multi-fidelity optimization (MFO) stands out as a cost-effective strategy that balances high-fidelity accuracy with computational efficiency through a hierarchical fidelity approach. This survey presents a systematic exploration of MFO, underpinned by a novel text mining framework based on a pre-trained language model. We delve deep into the foundational principles and methodologies of MFO, focusing on three core components -- multi-fidelity surrogate models, fidelity management strategies, and optimization techniques. Additionally, this survey highlights the diverse applications of MFO across several key domains, including machine learning, engineering design optimization, and scientific discovery, showcasing the adaptability and effectiveness of MFO in tackling complex computational challenges. Furthermore, we also envision several emerging challenges and prospects in the MFO landscape, spanning scalability, the composition of lower fidelities, and the integration of human-in-the-loop approaches at the algorithmic level. We also address critical issues related to benchmarking and the advancement of open science within the MFO community. Overall, this survey aims to catalyze further research and foster collaborations in MFO, setting the stage for future innovations and breakthroughs in the field.Comment: 47 pages, 9 figure

    Machine Learning-assisted Antenna Design optimization: A Review and the State-of-the-art

    Get PDF
    Antenna design optimization continues to attract a lot of interest. This is mainly because traditional antenna design methodologies are exhaustive and have no guarantee of yielding successful outcomes due to the complexity of contemporary antennas in terms of topology and performance requirements. Though design automation via optimization complements conventional antenna design approaches, antenna design optimization still presents a number of challenges. The major challenges in antenna design optimization include the efficiency and optimization capability of available methods to address a broad scope of antenna design problems considering the growing stringent specifications of modern antennas. This paper presents a review of the most recent progress in antenna design optimization with a focus on methods which address the challenges of efficiency and optimization capability via machine learning techniques. The methods highlighted in this paper will likely have an impact on the future development of antennas for a multiplicity of applications

    EM-driven miniaturization of high-frequency structures through constrained optimization

    Get PDF
    The trends afoot for miniaturization of high-frequency electronic devices require integration of active and passive high-frequency circuit elements within a single system. This high level of accomplishment not only calls for a cutting-edge integration technology but also necessitates accommodation of the corresponding circuit components within a restricted space in applications such as implantable devices, internet of things (IoT), or 5G communication systems. At the same time, size reduction does not remain the only demand. The performance requirements of the abovementioned systems form a conjugate demand to that of the size reduction, yet with a contrasting nature. A compromise can be achieved through constrained numerical optimization, in which two kinds of constrains may exist: equality and inequality ones. Still, the high cost of electromagnetic-based (EM-based) constraint evaluations remains an obstruction. This issue can be partly mitigated by implicit constraint handling using the penalty function approach. Nevertheless, securing its performance requires expensive guess-work-based identification of the optimum setup of the penalty coefficients. An additional challenge lies in allocating the design within or in the vicinity of a thin feasible region corresponding to equality constraints. Furthermore, multimodal nature of constrained miniaturization problems leads to initial design dependency of the optimization results. Regardless of the constraint type and the corresponding treatment techniques, the computational expenses of the optimization-based size reduction persist as a main challenge. This thesis attempts to address the abovementioned issues specifically pertaining to optimization-driven miniaturization of high frequency structures by developing relevant algorithms in a proper sequence. The first proposed approach with automated adjustment of the penalty functions is based on the concept of sufficient constraint violation improvement, thereby eliminating the costly initial trial-and-error stage for the identification of the optimum setup of the penalty factors. Another introduced approach, i.e., correction-based treatment of the equality constraints alleviates the difficulty of allocating the design within a thin feasible region where designs satisfying the equality constraints reside. The next developed technique allows for global size reduction of high-frequency components. This approach not only eliminates the aforementioned multimodality issues, but also accelerates the overall global optimization process by constructing a dimensionality-reduced surrogate model over a pre-identified feasible region as compared to the complete parameter search space. Further to the latter, an optimization framework employing multi-resolution EM-model management has been proposed to address the high cost issue. The said technique provides nearly 50 percent average acceleration of the optimization-based miniaturization process. The proposed technique pivots upon a newly-defined concept of model-fidelity control based on a combination of algorithmic metrics, namely convergence status and constraint violation level. Numerical validation of the abovementioned algorithms has also been provided using an extensive set of high-frequency benchmark structures. To the best of the author´s knowledge, the presented study is the first investigation of this kind in the literature and can be considered a contribution to the state of the art of automated high-frequency design and miniaturization

    Applications of machine learning and deep learning in antenna design, optimization, and selection : a review

    Get PDF
    This review paper provides an overview of the latest developments in artificial intelligence (AI)-based antenna design and optimization for wireless communications. Machine learning (ML) and deep learning (DL) algorithms are applied to antenna engineering to improve the efficiency of the design and optimization processes. The review discusses the use of electromagnetic (EM) simulators such as computer simulation technology (CST) and high-frequency structure simulator (HFSS) for ML and DL-based antenna design, which also covers reinforcement learning (RL)-bases approaches. Various antenna optimization methods including parallel optimization, single and multi-objective optimization, variable fidelity optimization, multilayer ML-assisted optimization, and surrogate-based optimization are discussed. The review also covers the AI-based antenna selection approaches for wireless applications. To support the automation of antenna engineering, the data generation technique with computational electromagnetics software is described and some useful datasets are reported. The review concludes that ML/DL can enhance antenna behavior prediction, reduce the number of simulations, improve computer efficiency, and speed up the antenna design process. © 2013 IEEE
    corecore