9,649 research outputs found

    ESAHR: Energy Efficient Swarm Adaptive Hybrid Routing Topology for Mobile Ad hoc Networks

    Get PDF
    Ad hoc networks consist of independent self structured nodes. Nodes use a wireless medium for exchange their message or data, therefore two nodes can converse directly if and only if they are within each other2019;s broadcast range. Swarm intelligence submits to complex behaviors that occur from very effortless individual activities and exchanges, which is frequently experienced in nature, especially amongst social insects such as ants. Although each individual (an ant) has little intelligence and simply follows basic rules using local information gained from the surroundings, for instance ant2019;s pheromone track arranging and following activities, globally optimized activities, such as discovering a shortest route, appear when they work together as a group. In this regard in our earlier work we proposed a biologically inspired metaphor based routing in mobile ad hoc networks that referred as Swarm Adaptive Hybrid Routing (SAHR). . With the motivation gained from SAHR, here in this paper we propose a energy efficient swarm adaptive hybrid routing topology (ESAHR). The goal is to improve transmission performance along with energy conservation that used for packet transmission In this paper we use our earlier proposed algorithm that inspired from Swarm Intelligence to obtain these characteristics. In an extensive set of simulation tests, we evaluate our routing algorithm with state-of-the-art algorithm, and demonstrate that it gets better performance over a wide range of diverse scenarios and for a number of different assessment measures. In particular, we show that it scales better in energy conservation with the number of nodes in the network

    Ant colony optimisation algorithms for solving multi-objective power-aware metrics for mobile ad hoc networks

    Get PDF
    A mobile ad hoc network (MANET) is an infrastructure-less multi-hop network where each node communicates with other nodes directly or indirectly through intermediate nodes. Thus, all nodes in a MANET basically function as mobile routers participating in some routing protocol required for deciding and maintaining the routes. Since MANETs are infrastructure-less, self-organizing, rapidly deployable wireless networks, they are highly suitable for applications such as military tactical operations, search and rescue missions, disaster relief operations, and target tracking. Building such ad-hoc networks poses a significant technical challenge because of energy constraints and specifically in relation to the application of wireless network protocols. As a result of its highly dynamic and distributed nature, the routing layer within the wireless network protocol stack, presents one of the key technical challenges in MANETs. In particular, energy efficient routing may be the most important design criterion for MANETs since mobile nodes are powered by batteries with limited capacity and variable recharge frequency, according to application demand. In order to conserve power it is essential that a routing protocol be designed to guarantee data delivery even should most of the nodes be asleep and not forwarding packets to other nodes. Load distribution constitutes another important approach to the optimisation of active communication energy. Load distribution enables the maximisation of the network lifetime by facilitating the avoidance of over-utilised nodes when a route is in the process of being selected. Routing algorithms for mobile networks that attempt to optimise routes while at- tempting to retain a small message overhead and maximise the network lifetime has been put forward. However certain of these routing protocols have proved to have a negative impact on node and network lives by inadvertently over-utilising the energy resources of a small set of nodes in favour of others. The conservation of power and careful sharing of the cost of routing packets would ensure an increase in both node and network lifetimes. This thesis proposes simultaneously, by using an ant colony optimisation (ACO) approach, to optimise five power-aware metrics that do result in energy-efficient routes and also to maximise the MANET's lifetime while taking into consideration a realistic mobility model. By using ACO algorithms a set of optimal solutions - the Pareto-optimal set - is found. This thesis proposes five algorithms to solve the multi-objective problem in the routing domain. The first two algorithms, namely, the energy e±ciency for a mobile network using a multi-objective, ant colony optimisation, multi-pheromone (EEMACOMP) algorithm and the energy efficiency for a mobile network using a multi-objective, ant colony optimisation, multi-heuristic (EEMACOMH) algorithm are both adaptations of multi-objective, ant colony optimisation algorithms (MOACO) which are based on the ant colony system (ACS) algorithm. The new algorithms are constructive which means that in every iteration, every ant builds a complete solution. In order to guide the transition from one state to another, the algorithms use pheromone and heuristic information. The next two algorithms, namely, the energy efficiency for a mobile network using a multi-objective, MAX-MIN ant system optimisation, multi-pheromone (EEMMASMP) algorithm and the energy efficiency for a mobile network using a multi-objective, MAX- MIN ant system optimisation, multi-heuristic (EEMMASMH) algorithm, both solve the above multi-objective problem by using an adaptation of the MAX-MIN ant system optimisation algorithm. The last algorithm implemented, namely, the energy efficiency for a mobile network using a multi-objective, ant colony optimisation, multi-colony (EEMACOMC) algorithm uses a multiple colony ACO algorithm. From the experimental results the final conclusions may be summarised as follows: Ant colony, multi-objective optimisation algorithms are suitable for mobile ad hoc networks. These algorithms allow for high adaptation to frequent changes in the topology of the network. All five algorithms yielded substantially better results than the non-dominated sorting genetic algorithm (NSGA-II) in terms of the quality of the solution. All the results prove that the EEMACOMP outperforms the other four ACO algorithms as well as the NSGA-II algorithm in terms of the number of solutions, closeness to the true Pareto front and diversity. Thesis (PhD)--University of Pretoria, 2010.Computer Scienceunrestricte

    Energy Efficient Ant Colony Algorithms for Data Aggregation in Wireless Sensor Networks

    Get PDF
    In this paper, a family of ant colony algorithms called DAACA for data aggregation has been presented which contains three phases: the initialization, packet transmission and operations on pheromones. After initialization, each node estimates the remaining energy and the amount of pheromones to compute the probabilities used for dynamically selecting the next hop. After certain rounds of transmissions, the pheromones adjustment is performed periodically, which combines the advantages of both global and local pheromones adjustment for evaporating or depositing pheromones. Four different pheromones adjustment strategies are designed to achieve the global optimal network lifetime, namely Basic-DAACA, ES-DAACA, MM-DAACA and ACS-DAACA. Compared with some other data aggregation algorithms, DAACA shows higher superiority on average degree of nodes, energy efficiency, prolonging the network lifetime, computation complexity and success ratio of one hop transmission. At last we analyze the characteristic of DAACA in the aspects of robustness, fault tolerance and scalability.Comment: To appear in Journal of Computer and System Science

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    MODLEACH: A Variant of LEACH for WSNs

    Full text link
    Wireless sensor networks are appearing as an emerging need for mankind. Though, Such networks are still in research phase however, they have high potential to be applied in almost every field of life. Lots of research is done and a lot more is awaiting to be standardized. In this work, cluster based routing in wireless sensor networks is studied precisely. Further, we modify one of the most prominent wireless sensor network's routing protocol "LEACH" as modified LEACH (MODLEACH) by introducing \emph{efficient cluster head replacement scheme} and \emph{dual transmitting power levels}. Our modified LEACH, in comparison with LEACH out performs it using metrics of cluster head formation, through put and network life. Afterwards, hard and soft thresholds are implemented on modified LEACH (MODLEACH) that boast the performance even more. Finally a brief performance analysis of LEACH, Modified LEACH (MODLEACH), MODLEACH with hard threshold (MODLEACHHT) and MODLEACH with soft threshold (MODLEACHST) is undertaken considering metrics of throughput, network life and cluster head replacements.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
    • …
    corecore