35 research outputs found

    Answer-Type Prediction for Visual Question Answering

    Get PDF
    Recently, algorithms for object recognition and related tasks have become sufficiently proficient that new vision tasks can now be pursued. In this paper, we build a system capable of answering open-ended text-based questions about images, which is known as Visual Question Answering (VQA). Our approach’s key insight is that we can predict the form of the answer from the question. We formulate our solution in a Bayesian framework. When our approach is combined with a discriminative model, the combined model achieves state-of-the-art results on four benchmark datasets for open-ended VQA: DAQUAR, COCO-QA, The VQA Dataset, and Visual7W

    TallyQA: Answering Complex Counting Questions

    Full text link
    Most counting questions in visual question answering (VQA) datasets are simple and require no more than object detection. Here, we study algorithms for complex counting questions that involve relationships between objects, attribute identification, reasoning, and more. To do this, we created TallyQA, the world's largest dataset for open-ended counting. We propose a new algorithm for counting that uses relation networks with region proposals. Our method lets relation networks be efficiently used with high-resolution imagery. It yields state-of-the-art results compared to baseline and recent systems on both TallyQA and the HowMany-QA benchmark.Comment: To appear in AAAI 2019 ( To download the dataset please go to http://www.manojacharya.com/

    Going Deeper with Semantics: Video Activity Interpretation using Semantic Contextualization

    Full text link
    A deeper understanding of video activities extends beyond recognition of underlying concepts such as actions and objects: constructing deep semantic representations requires reasoning about the semantic relationships among these concepts, often beyond what is directly observed in the data. To this end, we propose an energy minimization framework that leverages large-scale commonsense knowledge bases, such as ConceptNet, to provide contextual cues to establish semantic relationships among entities directly hypothesized from video signal. We mathematically express this using the language of Grenander's canonical pattern generator theory. We show that the use of prior encoded commonsense knowledge alleviate the need for large annotated training datasets and help tackle imbalance in training through prior knowledge. Using three different publicly available datasets - Charades, Microsoft Visual Description Corpus and Breakfast Actions datasets, we show that the proposed model can generate video interpretations whose quality is better than those reported by state-of-the-art approaches, which have substantial training needs. Through extensive experiments, we show that the use of commonsense knowledge from ConceptNet allows the proposed approach to handle various challenges such as training data imbalance, weak features, and complex semantic relationships and visual scenes.Comment: Accepted to WACV 201

    On the Value of Out-of-Distribution Testing: An Example of Goodhart's Law

    Full text link
    Out-of-distribution (OOD) testing is increasingly popular for evaluating a machine learning system's ability to generalize beyond the biases of a training set. OOD benchmarks are designed to present a different joint distribution of data and labels between training and test time. VQA-CP has become the standard OOD benchmark for visual question answering, but we discovered three troubling practices in its current use. First, most published methods rely on explicit knowledge of the construction of the OOD splits. They often rely on ``inverting'' the distribution of labels, e.g. answering mostly 'yes' when the common training answer is 'no'. Second, the OOD test set is used for model selection. Third, a model's in-domain performance is assessed after retraining it on in-domain splits (VQA v2) that exhibit a more balanced distribution of labels. These three practices defeat the objective of evaluating generalization, and put into question the value of methods specifically designed for this dataset. We show that embarrassingly-simple methods, including one that generates answers at random, surpass the state of the art on some question types. We provide short- and long-term solutions to avoid these pitfalls and realize the benefits of OOD evaluation
    corecore