12,013 research outputs found

    The random graph

    Full text link
    Erd\H{o}s and R\'{e}nyi showed the paradoxical result that there is a unique (and highly symmetric) countably infinite random graph. This graph, and its automorphism group, form the subject of the present survey.Comment: Revised chapter for new edition of book "The Mathematics of Paul Erd\H{o}s

    Coarse distinguishability of graphs with symmetric growth

    Full text link
    Let XX be a connected, locally finite graph with symmetric growth. We prove that there is a vertex coloring ϕ ⁣:X{0,1}\phi\colon X\to\{0,1\} and some RNR\in\mathbb{N} such that every automorphism ff preserving ϕ\phi is RR-close to the identity map; this can be seen as a coarse geometric version of symmetry breaking. We also prove that the infinite motion conjecture is true for graphs where at least one vertex stabilizer SxS_x satisfies the following condition: for every non-identity automorphism fSxf\in S_x, there is a sequence xnx_n such that limd(xn,f(xn))=\lim d(x_n,f(x_n))=\infty

    The Ramsey Theory of Henson graphs

    Full text link
    Analogues of Ramsey's Theorem for infinite structures such as the rationals or the Rado graph have been known for some time. In this context, one looks for optimal bounds, called degrees, for the number of colors in an isomorphic substructure rather than one color, as that is often impossible. Such theorems for Henson graphs however remained elusive, due to lack of techniques for handling forbidden cliques. Building on the author's recent result for the triangle-free Henson graph, we prove that for each k4k\ge 4, the kk-clique-free Henson graph has finite big Ramsey degrees, the appropriate analogue of Ramsey's Theorem. We develop a method for coding copies of Henson graphs into a new class of trees, called strong coding trees, and prove Ramsey theorems for these trees which are applied to deduce finite big Ramsey degrees. The approach here provides a general methodology opening further study of big Ramsey degrees for ultrahomogeneous structures. The results have bearing on topological dynamics via work of Kechris, Pestov, and Todorcevic and of Zucker.Comment: 75 pages. Substantial revisions in the presentation. Submitte

    Dirac operators and spectral triples for some fractal sets built on curves

    Get PDF
    We construct spectral triples and, in particular, Dirac operators, for the algebra of continuous functions on certain compact metric spaces. The triples are countable sums of triples where each summand is based on a curve in the space. Several fractals, like a finitely summable infinite tree and the Sierpinski gasket, fit naturally within our framework. In these cases, we show that our spectral triples do describe the geodesic distance and the Minkowski dimension as well as, more generally, the complex fractal dimensions of the space. Furthermore, in the case of the Sierpinski gasket, the associated Dixmier-type trace coincides with the normalized Hausdorff measure of dimension log3/log2\log 3/ \log 2.Comment: 48 pages, 4 figures. Elementary proofs omitted. To appear in Adv. Mat
    corecore