7 research outputs found

    Enhanced Outsider-anonymous Broadcast Encryption with Subset Difference Revocation

    Get PDF
    This paper puts forward an efficient broadcast encryption in public key setting employing ternary tree subset difference method for revocation. It provides outsider anonymity disabling the revoked users from getting any information of message and concealing the set of subscribed users from the revoked users. Our approach utilizes composite order bilinear group setting and exhibits significant improvement in the broadcast efficiency. The proposed scheme compares favourably over the existing similar schemes in standard model. The public key and secret key sizes are poly-logarithmic while the ciphertext size is sub linear in total number of users. Our scheme achieves selective security against chosen plaintext attack in the standard model under reasonable assumptions

    Optimal Broadcast Encryption from LWE and Pairings in the Standard Model

    Get PDF
    Broadcast Encryption with optimal parameters was a long-standing problem, whose first solution was provided in an elegant work by Boneh, Waters and Zhandry [BWZ14]. However, this work relied on multilinear maps of logarithmic degree, which is not considered a standard assumption. Recently, Agrawal and Yamada [AY20] improved this state of affairs by providing the first construction of optimal broadcast encryption from Bilinear Maps and Learning With Errors (LWE). However, their proof of security was in the generic bilinear group model. In this work, we improve upon their result by providing a new construction and proof in the standard model. In more detail, we rely on the Learning With Errors (LWE) assumption and the Knowledge of OrthogonALity Assumption (KOALA) [BW19] on bilinear groups. Our construction combines three building blocks: a (computational) nearly linear secret sharing scheme with compact shares which we construct from LWE, an inner-product functional encryption scheme with special properties which is constructed from the bilinear Matrix Decision Diffie Hellman (MDDH) assumption, and a certain form of hyperplane obfuscation, which is constructed using the KOALA assumption. While similar to that of Agrawal and Yamada, our construction provides a new understanding of how to decompose the construction into simpler, modular building blocks with concrete and easy-to-understand security requirements for each one. We believe this sheds new light on the requirements for optimal broadcast encryption, which may lead to new constructions in the future

    Optimal Broadcast Encryption from Pairings and LWE

    Get PDF
    Boneh, Waters and Zhandry (CRYPTO 2014) used multilinear maps to provide a solution to the long-standing problem of public-key broadcast encryption (BE) where all parameters in the system are small. In this work, we improve their result by providing a solution that uses only bilinear maps and Learning With Errors (LWE). Our scheme is fully collusion-resistant against any number of colluders, and can be generalized to an identity-based broadcast system with short parameters. Thus, we reclaim the problem of optimal broadcast encryption from the land of “Obfustopia”. Our main technical contribution is a ciphertext policy attribute based encryption (CP-ABE) scheme which achieves special efficiency properties – its ciphertext size, secret key size, and public key size are all independent of the size of the circuits supported by the scheme. We show that this special CP-ABE scheme implies BE with optimal parameters; but it may also be of independent interest. Our constructions rely on a novel interplay of bilinear maps and LWE, and are proven secure in the generic group model

    Searchable Encryption for Cloud and Distributed Systems

    Get PDF
    The vast development in information and communication technologies has spawned many new computing and storage architectures in the last two decades. Famous for its powerful computation ability and massive storage capacity, cloud services, including storage and computing, replace personal computers and software systems in many industrial applications. Another famous and influential computing and storage architecture is the distributed system, which refers to an array of machines or components geographically dispersed but jointly contributes to a common task, bringing premium scalability, reliability, and efficiency. Recently, the distributed cloud concept has also been proposed to benefit both cloud and distributed computing. Despite the benefits of these new technologies, data security and privacy are among the main concerns that hinder the wide adoption of these attractive architectures since data and computation are not under the control of the end-users in such systems. The traditional security mechanisms, e.g., encryption, cannot fit these new architectures since they would disable the fast access and retrieval of remote storage servers. Thus, an urgent question turns to be how to enable refined and efficient data retrieval on encrypted data among numerous records (i.e., searchable encryption) in the cloud and distributed systems, which forms the topic of this thesis. Searchable encryption technologies can be divided into Searchable Symmetric Encryption (SSE) and Public-key Encryption with Keyword Search (PEKS). The intrinsical symmetric key hinders data sharing since it is problematic and insecure to reveal one’s key to others. However, SSE outperforms PEKS due to its premium efficiency and is thus is prefered in a number of keyword search applications. Then multi-user SSE with rigorous and fine access control undoubtedly renders a satisfactory solution of both efficiency and security, which is the first problem worthy of our much attention. Second, functions and versatility play an essential role in a cloud storage application but it is still tricky to realize keyword search and deduplication in the cloud simultaneously. Large-scale data usually renders significant data redundancy and saving cloud storage resources turns to be inevitable. Existing schemes only facilitate data retrieval due to keywords but rarely consider other demands like deduplication. To be noted, trivially and hastily affiliating a separate deduplication scheme to the searchable encryption leads to disordered system architecture and security threats. Therefore, attention should be paid to versatile solutions supporting both keyword search and deduplication in the cloud. The third problem to be addressed is implementing multi-reader access for PEKS. As we know, PEKS was born to support multi-writers but enabling multi-readers in PEKS is challenging. Repeatedly encrypting the same keyword with different readers’ keys is not an elegant solution. In addition to keyword privacy, user anonymity coming with a multi-reader setting should also be formulated and preserved. Last but not least, existing schemes targeting centralized storage have not taken full advantage of distributed computation, which is considerable efficiency and fast response. Specifically, all testing tasks between searchable ciphertexts and trapdoor/token are fully undertaken by the only centralized cloud server, resulting in a busy system and slow response. With the help of distributed techniques, we may now look forward to a new turnaround, i.e., multiple servers jointly work to perform the testing with better efficiency and scalability. Then the intractable multi-writer/multi-reader mode supporting multi-keyword queries may also come true as a by-product. This thesis investigates searchable encryption technologies in cloud storage and distributed systems and spares effort to address the problems mentioned above. Our first work can be classified into SSE. We formulate the Multi-user Verifiable Searchable Symmetric Encryption (MVSSE) and propose a concrete scheme for multi-user access. It not only offers multi-user access and verifiability but also supports extension on updates as well as a non-single keyword index. Moreover, revocable access control is obtained that the search authority is validated each time a query is launched, different from existing mechanisms that once the search authority is granted, users can search forever. We give simulation-based proof, demonstrating our proposal possesses Universally Composable (UC)-security. Second, we come up with a redundancy elimination solution on top of searchable encryption. Following the keyword comparison approach of SSE, we formulate a hybrid primitive called Message-Locked Searchable Encryption (MLSE) derived in the way of SSE’s keyword search supporting keyword search and deduplication and present a concrete construction that enables multi-keyword query and negative keyword query as well as deduplication at a considerable small cost, i.e., the tokens are used for both search and deduplication. And it can further support Proof of Storage (PoS), testifying the content integrity in cloud storage. The semantic security is proved in Random Oracle Model using the game-based methodology. Third, as the branch of PEKS, the Broadcast Authenticated Encryption with Keyword Search (BAEKS) is proposed to bridge the gap of multi-reader access for PEKS, followed by a scheme. It not only resists Keyword Guessing Attacks (KGA) but also fills in the blank of anonymity. The scheme is proved secure under Decisional Bilinear Diffie-Hellman (DBDH) assumption in the Random Oracle Model. For distributed systems, we present a Searchable Encryption based on Efficient Privacy-preserving Outsourced calculation framework with Multiple keys (SE-EPOM) enjoying desirable features, which can be classified into PEKS. Instead of merely deploying a single server, multiple servers are employed to execute the test algorithm in our scheme jointly. The refined search, i.e., multi-keyword query, data confidentiality, and search pattern hiding, are realized. Besides, the multi-writer/multi-reader mode comes true. It is shown that under the distributed circumstance, much efficiency can be substantially achieved by our construction. With simulation-based proof, the security of our scheme is elaborated. All constructions proposed in this thesis are formally proven according to their corresponding security definitions and requirements. In addition, for each cryptographic primitive designed in this thesis, concrete schemes are initiated to demonstrate the availability and practicality of our proposal

    Secure and efficient processing of outsourced data structures using trusted execution environments

    Full text link
    In recent years, more and more companies make use of cloud computing; in other words, they outsource data storage and data processing to a third party, the cloud provider. From cloud computing, the companies expect, for example, cost reductions, fast deployment time, and improved security. However, security also presents a significant challenge as demonstrated by many cloud computing–related data breaches. Whether it is due to failing security measures, government interventions, or internal attackers, data leakages can have severe consequences, e.g., revenue loss, damage to brand reputation, and loss of intellectual property. A valid strategy to mitigate these consequences is data encryption during storage, transport, and processing. Nevertheless, the outsourced data processing should combine the following three properties: strong security, high efficiency, and arbitrary processing capabilities. Many approaches for outsourced data processing based purely on cryptography are available. For instance, encrypted storage of outsourced data, property-preserving encryption, fully homomorphic encryption, searchable encryption, and functional encryption. However, all of these approaches fail in at least one of the three mentioned properties. Besides approaches purely based on cryptography, some approaches use a trusted execution environment (TEE) to process data at a cloud provider. TEEs provide an isolated processing environment for user-defined code and data, i.e., the confidentiality and integrity of code and data processed in this environment are protected against other software and physical accesses. Additionally, TEEs promise efficient data processing. Various research papers use TEEs to protect objects at different levels of granularity. On the one end of the range, TEEs can protect entire (legacy) applications. This approach facilitates the development effort for protected applications as it requires only minor changes. However, the downsides of this approach are that the attack surface is large, it is difficult to capture the exact leakage, and it might not even be possible as the isolated environment of commercially available TEEs is limited. On the other end of the range, TEEs can protect individual, stateless operations, which are called from otherwise unchanged applications. This approach does not suffer from the problems stated before, but it leaks the (encrypted) result of each operation and the detailed control flow through the application. It is difficult to capture the leakage of this approach, because it depends on the processed operation and the operation’s location in the code. In this dissertation, we propose a trade-off between both approaches: the TEE-based processing of data structures. In this approach, otherwise unchanged applications call a TEE for self-contained data structure operations and receive encrypted results. We examine three data structures: TEE-protected B+-trees, TEE-protected database dictionaries, and TEE-protected file systems. Using these data structures, we design three secure and efficient systems: an outsourced system for index searches; an outsourced, dictionary-encoding–based, column-oriented, in-memory database supporting analytic queries on large datasets; and an outsourced system for group file sharing supporting large and dynamic groups. Due to our approach, the systems have a small attack surface, a low likelihood of security-relevant bugs, and a data owner can easily perform a (formal) code verification of the sensitive code. At the same time, we prevent low-level leakage of individual operation results. For all systems, we present a thorough security evaluation showing lower bounds of security. Additionally, we use prototype implementations to present upper bounds on performance. For our implementations, we use a widely available TEE that has a limited isolated environment—Intel Software Guard Extensions. By comparing our systems to related work, we show that they provide a favorable trade-off regarding security and efficiency
    corecore