
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
2017+ University of Wollongong Thesis Collections

2021

Searchable Encryption for Cloud and Distributed Systems Searchable Encryption for Cloud and Distributed Systems

Xueqiao Liu
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses1

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation
Liu, Xueqiao, Searchable Encryption for Cloud and Distributed Systems, Doctor of Philosophy thesis,
School of Computing and Information Technology, University of Wollongong, 2021. https://ro.uow.edu.au/
theses1/1121

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses1?utm_source=ro.uow.edu.au%2Ftheses1%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages

Searchable Encryption for Cloud and Distributed Systems

Xueqiao Liu

This thesis is presented as part of the requirements for the conferral of the degree:

Doctor of Philosophy

Supervisors:
Associate Professor Guomin Yang & Doctor Joseph Tonien

The University of Wollongong
School of Computing & Information Technology

July, 2021

This work © copyright by Xueqiao Liu, 2021. All Rights Reserved.

No part of this work may be reproduced, stored in a retrieval system, transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the
author or the University of Wollongong.

This research has been conducted with the support of an Australian Government Research Training
Program Scholarship.

Declaration

I, Xueqiao Liu, declare that this thesis is submitted in partial fulfilment of the requirements
for the conferral of the degree Doctor of Philosophy, from the University of Wollongong,
is wholly my own work unless otherwise referenced or acknowledged. This document
has not been submitted for qualifications at any other academic institution.

Xueqiao Liu

July 28, 2021

Abstract

The vast development in information and communication technologies has spawned many
new computing and storage architectures in the last two decades. Famous for its powerful
computation ability and massive storage capacity, cloud services, including storage and
computing, replace personal computers and software systems in many industrial appli-
cations. Another famous and influential computing and storage architecture is the dis-
tributed system, which refers to an array of machines or components geographically dis-
persed but jointly contributes to a common task, bringing premium scalability, reliability,
and efficiency. Recently, the distributed cloud concept has also been proposed to benefit
both cloud and distributed computing. Despite the benefits of these new technologies,
data security and privacy are among the main concerns that hinder the wide adoption of
these attractive architectures since data and computation are not under the control of the
end-users in such systems. The traditional security mechanisms, e.g., encryption, cannot
fit these new architectures since they would disable the fast access and retrieval of remote
storage servers. Thus, an urgent question turns to be how to enable refined and efficient
data retrieval on encrypted data among numerous records (i.e., searchable encryption) in
the cloud and distributed systems, which forms the topic of this thesis.

Searchable encryption technologies can be divided into Searchable Symmetric Encryp-
tion (SSE) and Public-key Encryption with Keyword Search (PEKS). The intrinsical sym-
metric key hinders data sharing since it is problematic and insecure to reveal one’s key
to others. However, SSE outperforms PEKS due to its premium efficiency and is thus is
prefered in a number of keyword search applications. Then multi-user SSE with rigor-
ous and fine access control undoubtedly renders a satisfactory solution of both efficiency
and security, which is the first problem worthy of our much attention. Second, functions
and versatility play an essential role in a cloud storage application but it is still tricky to
realize keyword search and deduplication in the cloud simultaneously. Large-scale data
usually renders significant data redundancy and saving cloud storage resources turns to
be inevitable. Existing schemes only facilitate data retrieval due to keywords but rarely
consider other demands like deduplication. To be noted, trivially and hastily affiliating
a separate deduplication scheme to the searchable encryption leads to disordered system
architecture and security threats. Therefore, attention should be paid to versatile solutions
supporting both keyword search and deduplication in the cloud. The third problem to be

iv

v

addressed is implementing multi-reader access for PEKS. As we know, PEKS was born
to support multi-writers but enabling multi-readers in PEKS is challenging. Repeatedly
encrypting the same keyword with different readers’ keys is not an elegant solution. In ad-
dition to keyword privacy, user anonymity coming with a multi-reader setting should also
be formulated and preserved. Last but not least, existing schemes targeting centralized
storage have not taken full advantage of distributed computation, which is considerable
efficiency and fast response. Specifically, all testing tasks between searchable ciphertexts
and trapdoor/token are fully undertaken by the only centralized cloud server, resulting in
a busy system and slow response. With the help of distributed techniques, we may now
look forward to a new turnaround, i.e., multiple servers jointly work to perform the testing
with better efficiency and scalability. Then the intractable multi-writer/multi-reader mode
supporting multi-keyword queries may also come true as a by-product.

This thesis investigates searchable encryption technologies in cloud storage and dis-
tributed systems and spares effort to address the problems mentioned above. Our first
work can be classified into SSE. We formulate the Multi-user Verifiable Searchable Sym-
metric Encryption (MVSSE) and propose a concrete scheme for multi-user access. It not
only offers multi-user access and verifiability but also supports extension on updates as
well as a non-single keyword index. Moreover, revocable access control is obtained that
the search authority is validated each time a query is launched, different from existing
mechanisms that once the search authority is granted, users can search forever. We give
simulation-based proof, demonstrating our proposal possesses Universally Composable
(UC)-security. Second, we come up with a redundancy elimination solution on top of
searchable encryption. Following the keyword comparison approach of SSE, we formu-
late a hybrid primitive called Message-Locked Searchable Encryption (MLSE) derived
in the way of SSE’s keyword search supporting keyword search and deduplication and
present a concrete construction that enables multi-keyword query and negative keyword
query as well as deduplication at a considerable small cost, i.e., the tokens are used for
both search and deduplication. And it can further support Proof of Storage (PoS), tes-
tifying the content integrity in cloud storage. The semantic security is proved in Ran-
dom Oracle Model using the game-based methodology. Third, as the branch of PEKS,
the Broadcast Authenticated Encryption with Keyword Search (BAEKS) is proposed to
bridge the gap of multi-reader access for PEKS, followed by a scheme. It not only resists
Keyword Guessing Attacks (KGA) but also fills in the blank of anonymity. The scheme
is proved secure under Decisional Bilinear Diffie-Hellman (DBDH) assumption in the
Random Oracle Model.

For distributed systems, we present a Searchable Encryption based on Efficient Privacy-
preserving Outsourced calculation framework with Multiple keys (SE-EPOM) enjoying
desirable features, which can be classified into PEKS. Instead of merely deploying a sin-
gle server, multiple servers are employed to execute the test algorithm in our scheme

vi

jointly. The refined search, i.e., multi-keyword query, data confidentiality, and search
pattern hiding, are realized. Besides, the multi-writer/multi-reader mode comes true. It
is shown that under the distributed circumstance, much efficiency can be substantially
achieved by our construction. With simulation-based proof, the security of our scheme is
elaborated.

All constructions proposed in this thesis are formally proven according to their corre-
sponding security definitions and requirements. In addition, for each cryptographic prim-
itive designed in this thesis, concrete schemes are initiated to demonstrate the availability
and practicality of our proposal.

Acknowledgments

It is my fortune to have Associate Professor Guomin Yang as my principal supervisor. His
consistent tolerance, patient guidance, and continuous encouragement have always been
with me, making me feel more motivated but less depressed. During my PhD candidacy,
he has spent much time, and energy revising my research manuscripts and played a friend
role in caring for and supporting me. His dedicated help saved me from feeling isolated
even during the lockdown caused by COVID-19. The integrity, kindness, and humility I
see in him infect and affect me, which are precisely the personalities I wish to own.

I would thank my co-supervisor Dr. Joseph Tonien, his wife Thanh Tonien, and their
family. Dr. Joseph Tonien’s rich knowledge of mathematics usually broadens my horizons
so that I can dabble a little bit in other research directions in addition to my own. In each
day spent with them, I felt joyful, consolated, and fulfilled. Their optimism, positivity,
and faithfulness show me an inspiring model of living a Christian life.

I am also grateful to Distinguished Professor Willy Susilo. Without his valuable sug-
gestions and selfless help, I might not be able to persist on my bumpy research journey.
He always talks with a sense of humour, and each conversation with him grants me to feel
encouraged, supportive, and hopeful.

Appreciation is also given to classmates and colleagues for their presence and accom-
pany in my PhD candidacy and their insights on computer science. A non-exhaustive list
of whom includes Ge Wu, Zhen Zhao, Yulin Wu, Tong Wu, Jianchang Lai, Zhongyuan
Yao, Zhichao Yang, Xingxin Li, Yannan Li, Luqi Huang, Jingjing Nie, Binrui Zhu, Xi-
aoguo Li, Tran Viet Xuan Phuong, Jiashuang Huang, Quoc Huy Le, Shiwei Zhang, Yang-
guang Tian, Shengmin Xu, Hongbo Li, Ke Huang, Yanwei Zhou, Jianye Huang, Yinhao
Jiang, Fatemeh Rezaeibagha, Fuchun Guo, Hua Shen, Zhenhua Chen, Zhe Xia, Peng Xu,
Hao Wang, Chunpeng Ge, and Jiaolian Zhao. I should give thanks to all my publications’
co-authors for their discussion, suggestions, and contribution to the manuscripts.

I am honoured to be a PhD candidate of the Institute of Cybersecurity and Cryptology
(IC2), School of Computer Science & Information Technology, University of Wollon-
gong. I want to thank the University of Wollongong for providing me with the Interna-
tional Postgraduate Tuition Award (IPTA) and supporting my PhD research.

I feel appreciated to my flatmates Kevin Huang, Jin Cui, and their parents and my
previous flatmates Jianfeng Li and Wanlin Wu. They have regarded me as one of their

vii

viii

family members and given extreme care so that I have never worried about daily cooking
and accommodation and concentrated more on my study. I also wish to thank my friends
and playmates, including Lengyan Wu, Linping Chan, Zhenghao Liu, Zewei Ding, and
Sohpie Zhang, Shuxin Chang, Frank Yu, Sean Yu, Jiaming Yan, Yingzhi Gou, Jing Ma,
Jiawang Ge, Zekai Liu, Yanyi Pu, Tosh Zhou, Zekun Wang, Gang Cui, Zijun Xu, Lipan
Lv,Heng Wang, Zhenlin Xiang, Yuepeng Mao, and Qining Fan. They have contracted
nearly all my social and sports activities. Without you, my after-school life would be less
colourful.

I would like to thank the priests and the faithful people along with me. They have
promoted, assisted, and witnessed my conversion, including Bishop Brian Mascord, Fr
Bernard Gordon, Fr Victor Vincent, Fr Mark De Battista, Max Norden, Denis Bristow,
Julie Every, Christine McCormack, Joe Bonanno, Stewart Wallace, Clare Atkinson, and
Ayla Summersford. Thank you, God, for the mercy, sympathy, blessing, strength you
gave me, as well as the faithful you have sent around me.

I want to thank my parents, Hu Liu and Lihua Zhang. Their full support has given me
the courage to resign and look for opportunities to study abroad. I should also apologize
to them since I have been absent from accompanying and taking care of them over the
years because of studying and working remotely. They have never blamed me or asked
me for any achievement but kept easing my anxiety with their tender words in their every
message and video call. I also want to thank my sister Yuanxing Liu for helping look after
our parents and standing by me. Without them, this thesis would never be possible.

Publication

This thesis is based on the following publications which were manuscripted when pursu-
ing the PhD degree in University of Wollongong.

1. Liu, X., Yang, G., Mu, Y. and Deng, R.H., 2018. Multi-user verifiable searchable
symmetric encryption for cloud storage. IEEE Transactions on Dependable and
Secure Computing, 17(6), pp.1322-1332.

2. Liu, X., Yang, G., Susilo, W., Tonien, J., Chen, R. and Xixiang, L., 2020. Message-
Locked Searchable Encryption: A New Versatile Tool for Secure Cloud Storage.
IEEE Transactions on Services Computing, (01), pp.1-1.

3. Liu, X., Yang, G., Susilo, W., Tonien, J., Liu, X. and Shen, J., 2020. Privacy-
preserving multi-keyword searchable encryption for distributed systems. IEEE
Transactions on Parallel and Distributed Systems, 32(3), pp.561-574.

4. Liu, X., He, K., Yang, G., Susilo, W., Tonien, J. and Huang, Q., 2021, December.
Broadcast authenticated encryption with keyword search. In Australasian Confer-
ence on Information Security and Privacy. Accepted.

The following are publications on other topics that I made contribution to and was
involved in drafting during the PhD degree.

5. He, K., Liu, X., Yuan, H., Wei, W. and Liang, K., 2017, December. Hierarchi-
cal Conditional Proxy Re-Encryption: A New Insight of Fine-Grained Secure Data
Sharing. In International Conference on Information Security Practice and Experi-
ence (pp. 118-135). Springer, Cham.

6. Liu, X., Li, H., Yang, G., Susilo, W., Tonien, J. and Huang, Q., 2019, October.
Towards Enhanced Security for Certificateless Public-Key Authenticated Encryp-
tion with Keyword Search. In International Conference on Provable Security (pp.
113-129). Springer, Cham.

7. Chen, Z., Huang, L., Shi, X., Huang, Q., Wang, H. and Liu, X., 2020. Privacy-
preserving polynomial interpolation and its applications on predictive analysis. In-
formation Sciences, 541, pp.259-270.

ix

List of Figures

3.1 Multi-user SSE . 27
3.2 Real Game . 32
3.3 Simulation Game . 33
3.4 Scheme Model . 35
3.5 Ideal Functionality . 39
3.6 Experimental Results . 49

4.1 MLSE . 56
4.2 Input, Output and Information Exchange in Three Scenarios Regarding

Syntax of MLSE . 59
4.3 Records in Storage Server . 61
4.4 First-Time Uploading with Nonexistent Search Tags 62
4.5 First-Time Uploading with Existent Search Tags but Nonexistent Cipher-

text Tag . 63
4.6 Deduplication with Existent Search Tags and Existent Ciphertext Tag . . 63
4.7 Algorithm Performance . 77

5.1 BAEKS System Model . 85

6.1 System model. 107
6.2 Experimental Results . 124

x

List of Tables

3.1 Search and Verify . 50
3.2 Performance Comparison . 52

4.1 PoS Performance . 76
4.2 Feature Comparison . 78
4.3 Search Functionality Comparison . 78

5.1 Functionality Comparison between [104] and Ours 100
5.2 Computation Cost Comparison . 100
5.3 Communication Complexity Comparison 100

6.1 A Toy Example . 115
6.2 Functionality Comparison . 126

xi

List of Abbreviations

l-BDHE l-Bilinear Diffie-Hellman Exponent assumption

ABE Attribute-Based Encryption

ANO Anonymity

BAEKS Broadcast Authenticated Encryption with Keyword Search

BE Broadcast Encryption

BL-MLE Block-Level Message-Locked Encryption

BS Blind Signature

CBDH Computational Bilinear Diffie-Hellman assumption

CCA Chosen Ciphertext Attacks

CDH Computational Diffie-Hellman assumption

CE Convergent Encryption

CP Cloud Platform

CPA Chosen Plaintext Attack

CP-ABE Ciphertext-Policy Attribute-Based Encryption

CR Collision-Resistant

DBDH Decisional Bilinear Diffie-Hellman assumption

DDH Decisional Diffie-Hellman assumption

DL Discrete Logarithm assumption

DNF Disjunctive Normal Formulation

DP Data Provider

DS-PEKS Dual-Server Public-key Encryption with Keyword Search

DSSE Dynamic Searchable Symmetric Encryption

DT-PKC Distributed Two-trapdoor Public-Key Cryptosystem

xii

LIST OF TABLES xiii

EPOM Efficient Privacy-preserving Outsourced calculation framework with Mul-
tiple keys

ESE Efficiently Searchable Encryption

FHE Fully Homomorphic Encryption

HE Homomorphic Encryption

IBBE Identity-Based Broadcast Encryption

IBEKS Identity-based Broadcast Encryption with Keyword Search

iMLE interactive Message-Locked Encryption

IND-CCA2 Indistinguishability against adaptive Chosen Ciphertext Attacks

IND-CKA Semantic Security against adaptive Chosen Keyword Attack

IND-CMA Indistinguishability against Chosen Message Attack

IND-TD Indistinguishability on Trapdoor

IS Internal Server

KGA Keyword Guessing Attack

KGC Key Generation Center

KRB Keyword Red-Black

KS Key Server

MAC Message Authenticate Code

MLE Message-Locked Encryption

MLSE Message-Locked Searchable Encryption

MSE-DDH Multi-Sequence of Exponents Decisional Diffie-Hellman assumption

MSSE Multi-user Searchable Symmetric Encryption

MVSSE Multi-user Verifiable Searchable Symmetric Encryption

NIZK Non-Interactive Zero-Knowledge

ORAM Oblivious RAM

PAEKS Public-key Authenticated Encryption with Keyword Search

PEFKS Public-key Encryption with Fuzzy Keyword Search

PEKS Public-key Encryption with Keyword Search

PHE Partial Homomorphic Encryption

LIST OF TABLES xiv

PoS Proof of Storage

PoW Proof of Ownership

PPSED Privacy Preserving keyword Searches on remote Encrypted Data

PPT Probabilistic Polynomial Time

PRG Pseudo-Random Generator

PRV-CDA Privacy against Chosen Distribution Attack

RO Random Oracle

ROR Real Or Random

RU Request User

SA-PEKS Server-Aided Public-key Encryption with Keyword Search

SE Searchable Encryption

SE-EPOM Searchable Encryption based on Efficient Privacy-preserving Outsourced
calculation framework with Multiple keys

SKE Symmetric-Key Encryption

SNF Searchable Normal Form

SPP Search Pattern Privacy

SS Storage Server

SSE Searchable Symmetric Encryption

STD Standard model

T-ANO Trapdoor Anonymity

UC Universally Composable

UNC-CDA Uncheatable Chosen Distribution Attack

VSSE Verifiable Searchable Symmetric Encryption

Contents

Abstract iv

List of Figures x

List of Tables xi

List of Abbreviations xii

1 Introduction 1
1.1 Background . 1

1.1.1 Searchable Symmetric Encryption 3
1.1.2 Public-key Encryption with Keyword Search 4

1.2 Motivations and Contribution . 5
1.3 Thesis Organization . 9

2 Preliminaries 11
2.1 Miscellaneous Notations . 11
2.2 Foundations of Algebra . 12

2.2.1 Group . 12
2.2.2 Ring and Field . 13

2.3 Bilinear Map . 13
2.4 Complexity Assumptions . 14

2.4.1 Discrete Logarithm Assumption 14
2.4.2 Computational Diffie-Hellman Assumption 15
2.4.3 Decisional Diffie-Hellman Assumption 15
2.4.4 Computational Bilinear Diffie-Hellman Assumption 15
2.4.5 Decisional Bilinear Diffie-Hellman Assumption 16
2.4.6 l - Bilinear Diffie-Hellman Exponent Assumption 16

2.5 Cryptographic Tools . 17
2.5.1 Collision-Resistant Hash Function 17
2.5.2 RSA Accumulator . 17
2.5.3 Blind Signature . 18

xv

CONTENTS xvi

2.5.4 Real or Random Security . 20
2.5.5 Pseudo-Random Generator . 20
2.5.6 Broadcast Encryption . 21
2.5.7 Universally Composible Security 22
2.5.8 Message-Locked Encryption . 22
2.5.9 Distributed Two-trapdoor Public-Key Cryptosystem 24
2.5.10 Secure Bit-Decomposition Protocol (SBD) 25

3 Multi-User Verifiable Searchable Encryption for Cloud Storage 26
3.1 Introduction . 26

3.1.1 Related Work . 26
3.1.2 Our Contribution . 28
3.1.3 Chapter Organization . 29

3.2 Formal Definition and Security Models 29
3.2.1 Formal Definition . 29
3.2.2 Security Models . 30

3.3 The Proposed Construction . 31
3.3.1 An Overview of Our Construction 31
3.3.2 Detailed Construction . 34

3.4 Security Proof . 38
3.4.1 Ideal Functionality . 38
3.4.2 Equivalence between UC-Security and Security Models 40
3.4.3 UC-Security of Our Scheme . 43

3.5 Extensions . 47
3.5.1 Boolean Queries . 47
3.5.2 Adding or Revoking Users . 48

3.6 Performance Evaluation . 48
3.6.1 Experimental Analysis . 48
3.6.2 Comparison with Existing Schemes 50

3.7 Chapter Summary . 51

4 Message-Locked Searchable Encryption for Secure Cloud Storage 53
4.1 Introduction . 53

4.1.1 Weakness of Simple Combination of Existing Techniques 54
4.1.2 Related Work . 55
4.1.3 Our Contribution . 56
4.1.4 Chapter Organization . 57

4.2 Formal Definition and Security Model 57
4.2.1 Formal Definition . 57
4.2.2 Workflow . 59

CONTENTS xvii

4.2.3 Correctness . 64
4.2.4 Security Models . 64

4.3 The Proposed Scheme . 67
4.3.1 An Overview of Our Construction 67
4.3.2 Detailed Construction . 67
4.3.3 Correctness . 69

4.4 Security Proof . 69
4.5 Extensions on Proof of Storage . 73
4.6 Performance Evaluation . 75

4.6.1 Experimental Analysis . 75
4.6.2 Comparison with Existing Schemes 77

4.7 Chapter Summary . 78

5 Broadcast Authenticated Encryption with Keyword Search 79
5.1 Introduction . 79

5.1.1 Related Work . 82
5.1.2 Our Contribution . 83
5.1.3 Chapter Organization . 84

5.2 Formal Definition and Security Models 84
5.2.1 Formal Definition . 86
5.2.2 Security Models . 86

5.3 The Proposed Construction . 90
5.3.1 Detailed Construction . 90
5.3.2 Correctness . 91

5.4 Security Proof . 91
5.4.1 Trapdoor Privacy . 91
5.4.2 Ciphertext Indistinguishability 94
5.4.3 Anonymity . 96
5.4.4 Trapdoor Anonymity . 98

5.5 Performance Evaluation . 100
5.6 Chapter Summary . 101

6 Privacy-Preserving Searchable Encryption for Distributed Systems 103
6.1 Introduction . 103

6.1.1 Related Work . 105
6.1.2 Our Contribution . 106
6.1.3 Chapter Organization . 107

6.2 Formal Definition and Security Models 108
6.2.1 Formal Definition . 108
6.2.2 Security Models . 108

CONTENTS xviii

6.2.3 Simulation-Based Security Definition 111
6.3 The Proposed Construction . 112

6.3.1 An Overview of Our Construction 112
6.3.2 Subset Decision Mechanism . 113
6.3.3 Detailed Construction . 116

6.4 Security Proof . 119
6.4.1 Relation between Security Models and Simulation-Based Security 119
6.4.2 Simulation-Based Security Proof 120
6.4.3 Security due to Security Models 121
6.4.4 Access Pattern Hiding . 121

6.5 Performance Evaluation . 122
6.5.1 Experimental Analysis . 122
6.5.2 Comparison with Existing Schemes 124

6.6 Chapter Summary . 125

7 Conclusion and Future Work 127
7.1 Conclusion . 127

7.1.1 Dynamic Verifiable Searchable Encryption for Multi-User Access 127
7.1.2 Versatile Message-Locked Encryption with Keyword Search . . . 128
7.1.3 Broadcast Authenticated Encryption with Keyword Search 128
7.1.4 Privacy-Preserving Searchable Encryption for Distributed Systems 128

7.2 Future Work . 128

Bibliography 130

Chapter 1

Introduction

With the high digitization of information, the confidentiality of sensitive data and user
identity privacy is valued more and more whenever documents are manipulated, stored
and transmitted. Cryptographic primitives such as encryption have been designed and
developed to protect data content and user identity in the literature. Nevertheless, with
the emergence of new computing paradigms and architectures, these primitives need to
evolve for providing the desired security and functionality features. For the outsourced
computing and storage scenario deployed by cloud or distributed systems, demands of
cryptographic primitives and constructions are intensified and never subsided. In this the-
sis, we concentrate on seeking cryptographic primitives and concrete schemes in the scope
of searchable encryption, which is the crucial technique for data sharing and information
query. While keeping privacy, our constructions show their advantages regarding secu-
rity, functions, and efficiency over existing works, thereby being practical for industrial
implementation.

1.1 Background

As encrypted data is usually uploaded to remote servers to lighten personal devices’ stor-
age pressure and ease the data sharing with geographically demote devices, data retrieval
from the server encounters a big challenge. That is, how to request the server for desired
data without threatening the data confidentiality. Sensitive data must be pre-processed
before submitting to the server to keep confidentiality. Therefore, the server cannot locate
data based on content or semantics. The searchable encryption technologies [1] were first
proposed to meet the demand of rapid locating desired documents among the massive data
in the cloud storage and simultaneously assuring privacy. Though the searchable encryp-
tion technologies are categorized into two classes, i.e., Searchable Symmetric Encryption
(SSE) and Public-key Encryption with Keyword Search (PEKS), their four algorithms are
similar in syntax.

1

1.1. BACKGROUND 2

• Setup/Key Generation. In this algorithm, system parameters are set, and keys are
generated for each party.

• Build Index/Encrypt. In this algorithm, the data owner processes the keywords of
their documents and uploads this script, i.e., index or searchable ciphertext, to the
server.

• Token/Trapdoor Generation. In this algorithm, the authorized data user computes
the token or trapdoor based on the keyword of its interest, which is used for later
testing with an index item or a searchable ciphertext.

• Search/Test. In this algorithm, the server validates the received token or trapdoor
with the index item or searchable ciphertext in storage to decide to return the corre-
sponding document or not.

In addition, like the considerations when we measure other cryptosystems’ privacy
performance, searchable encryption cryptosystems usually request the following security
guarantees.

• Data Privacy. Searchable encryption depends on a third-party server to receive and
store scripts which imply a keyword-document relationship for later data retrieval.
That is, the index or the searchable ciphertext is visible to the server and may be
exposed to eavesdroppers in the public communication channel on the way to server
storage. Data privacy requires that the content of documents should be concealed,
even though index or searchable ciphertext is transmitted and stored, i.e., semantic
security [2].

• Keyword Privacy. Given a search query, i.e., the token or the trapdoor represent-
ing the keywords of user’s interest, keyword privacy requires that the token or the
trapdoor should not leak information about the underlying keyword while used for
testing index or searchable ciphertexts. The Keyword Guessing Attack (KGA) [3,
4] is famous for its vulnerability to keyword privacy, exploiting freely manufactured
ciphertexts of any keywords to infer the keyword of a trapdoor.

• Search Pattern Privacy. Search pattern refers to information about whether two
queries are launched for the same keyword [5], which was used to be thought in-
evitable when most search queries of searchable encryption schemes, especially
SSE, were certain and fixed for identical keywords.

• Access Pattern Privacy. Access pattern is the document identifiers returned for
a search [5]. At the end of the search, the query’s document identifiers may be
revealed to get search results returned. Such disclosure may further lead to unex-
pected data compromised [6].

1.1. BACKGROUND 3

1.1.1 Searchable Symmetric Encryption

Since the first construction in [1], Searchable Symmetric Encryption (SSE) has attracted
much attention. This initial design processes the whole document with light-weighted
operations such as hash and exclusive-or to enable keyword search. Still, it has the search
complexity linear to the document’s length. Initiated by [7] where Bloom filter is used,
subsequent researches [5, 8–15] start to extract an auxiliary index so that there is no need
to scan the whole document and thus search is accelerated. Security definitions were
correspondingly formalized to depict the security requirements for SSE, e.g., semantic
security against adaptive Chosen Keyword Attack (IND-CKA) [7]. The scheme in [7]
was later pointed out by [16] leaking information like the length of “1” entries in the
Bloom filter and incurs an enhanced version on its security definition followed by a mod-
ified scheme. Later on, simulation-based security models, including non-adaptive indis-
tinguishability and adaptive indistinguishability [5] have been presented to outline better
the security requirements for SSE, followed by concrete schemes. [9] later pointed out
the second scheme of [5] has design flaws and fails to meet their claimed security. In such
a tortuous journey, Searchable Symmetric Encryption schemes, as well as corresponding
security models, have been continuously investigated.

• Verifiable Searchable Symmetric Encryption (VSSE). Though usually the server is
assumed honest-but-curious, in reality, things may not turn out the way we want. A
Verifiable Searchable Symmetric Encryption scheme with additional mechanisms
checking the search result correctness is more favourable in terms of a malicious
server. The definition/syntax of verifiable searchable symmetric encryption was
first introduced by Kurosawa et al. [9] where two security aspects are considered
as well. Among them, privacy is inherited from the adaptive semantic security
of [5] but stronger, while reliability/verifiability ensures the correctness of search
results even when the server is malicious. A concrete VSSE construction using
Message Authenticate Code (MAC) for verifiability is included and proved Univer-
sally Composable (UC)-secure against non-adaptive adversaries, and UC-security is
proved equivalent to their definitions, privacy and reliability. A few VSSE schemes
[13, 17, 18] using pseudorandom function, RSA accumulator [19] or other crypto-
graphic primitives have been proposed since then.

• Dynamic Searchable Symmetric Encryption (DSSE). As large-scale data storage
always receives many data update requests, a dynamic searchable symmetric en-
cryption that supports efficient data or keyword modification better meets the user
requirements. [10] successfully realizes addition and deletion in a complex way,
including Homomorphic Encryption (HE) and an additional data structure called
deletion array. Later on, with the help of a novel tree-like structure named Keyword

1.1. BACKGROUND 4

Red-Black (KRB) tree, Kamara et al. enabled data update with simpler imple-
mentation, parallel running, and less leakage, i.e., information about the keywords
regarding the modified document [12]. Kim et al. proposed an efficient dynamic
scheme that enjoys merits of both inverted and forward indexes to update efficiently
[20]. Dynamic Searchable Symmetric Encryption with small leakage, premium up-
date complexity or forward/backward security has attracted great attention from
researchers [13, 21–24].

• Multi-user Searchable Symmetric Encryption (MSSE). Limited by the symmet-
ric key, SSE alone cannot support multi-reader access unless taking the risk of
data owner sharing the same key with all intended data users. Curtmola et al. [5]
first discussed how to realize multi-user and presented a detailed construction us-
ing Broadcast Encryption (BE). With the functions of user addition and revocation,
their scheme is able to add new users and prevent revoked users from searching.
However, it fails to offer complete access control. Specifically, after getting the key
of the pseudo-random permutation for the first time, the user can keep using it to
obtain the access authorization without decryption once more. Thus, in fact, its au-
thorization is not really checked in every search. Techniques to realize multi-user
setting are nothing more than cooperating with public-key primitives [25–29] or
importing additional auxiliary entities [28].

• Searchable Symmetric Encryption with Forward or Backward Security. A dynamic
SSE always encounters more challenges than a static one. The most commonly
discussed topics about dynamic schemes are forward privacy/security and backward
privacy/security, which have been formulated in [21, 30]. The forward security
requires that an addition request should not reveal anything about queried keywords
before. The backward security means that the queries cannot be performed over
deleted documents. Several schemes [23, 24, 31] with forward or backward security
have been designed and implemented.

1.1.2 Public-key Encryption with Keyword Search

As SSE’s public-key counterpart, PEKS was first introduced by Boneh et al. [2]. Different
from SSE, the encryption key is different from the search key. The semantic security
against an adaptive Chosen Keyword Attack was also formalized in [2] but was later
pointed out as insufficient for depicting the security requirements of a PEKS. Keyword
Gussing Attack (KGA) [3, 4] is the one that always threatens traditional PEKS schemes
in which searchable ciphertexts of arbitrary keywords can be manufactured to test with
eavesdropped trapdoors freely. Therefore, on the one hand, several variants of PEKS [32–
35] have been designed to resist such attacks. On the other side, more comprehensive

1.2. MOTIVATIONS AND CONTRIBUTION 5

security definitions have been presented to ask for better security assurance.

• Public-key Authenticated Encryption with Keyword Search (PAEKS). Designed for
defending KGA, Public-key Authenticated Encryption with Keyword Search and its
variants [35, 36] additionally take the secret key of the data owner to authenticate
the keyword when generating the searchable ciphertext so that no one else than the
owner can freely encrypt the keyword.

• Public-key Encryption with Fuzzy Keyword Search (PEFKS). Another defence to
KGA is the Searchable Encryption with Fuzzy Keyword Search [32]. The idea is
PEFKS lets a keyword refer to an exact trapdoor and a fuzzy trapdoor, and two or
more keywords share the same fuzzy trapdoor so that the one witnesses the trapdoor
cannot learn the exact underlying keyword. PEFKS schemes [32, 37, 38] have been
designed to enhance security or improve system practicality.

• Public-key Encryption with Multi-Keyword Search. PEKS supporting multi-keyword
queries has attracted significant attention from researchers. One of the approaches
to enable conjunctive keyword search is constructing a polynomial with the hash
of keywords, i.e., its roots [39–41]. Other alternative approaches such as Attribute-
Based Encryption (ABE) and specific data structures appear in [42–44] to make
multi-keyword queries possible.

• Multi-user Public-key Encryption with Keyword Search. Without the generality,
multi-user may refer to different classes, i.e., multi-writer, multi-reader, and multi-
writer/multi-reader. PEKS’s public-key feature implies that PEKS initially enables
a multi-writer setting while how to support multi-reader access is somehow foggy
yet. Sun et al. [26] utilized Ciphertext-Policy Attribute-Based Encryption (CP-
ABE) on top of [11] to make multi-reader possible. Most searchable encryption
schemes [5, 26] realizing multi-reader setting are hybrid schemes which employ
both symmetric-key primitives and public-key primitives. The outlook of multi-
writer/multi-reader cryptosystems is most tricky and still unclear.

1.2 Motivations and Contribution

Though there have been many investigations on searchable encryption in the past two
decades, several problems within searchable encryption remain unaddressed. Especially
in the scope of cloud services, practical solutions for several issues, including dynamic
Verifiable Multi-user Searchable Symmetric Encryption with multi-keyword query and
accountable access control, Message-Locked Encryption with keyword search using rel-
atively few reusable tags, and anonymous multi-reader keyword search based on a broad-
cast approach, remain outstanding. Besides, searchable schemes have been devised based

1.2. MOTIVATIONS AND CONTRIBUTION 6

on a centralized server in quite a long time, and privacy-preserving keyword search schemes
supporting both multi-writer and multi-reader suitable for distributed systems/computation
awaits proposals. Therefore, in this thesis, we focus on resolving these problems as men-
tioned above. It is noted that building a practical cloud storage service system requires not
only searchable encryption technology but also considerations such as distributed strat-
egy, file compression, network architecture, and disaster tolerance. Moreover, a privacy-
preserving cloud system involves research fields not limited to cryptography, and its re-
alization will be pretty complicated. Thus, in this thesis, we only concentrate on crypto-
graphic primitives and protocols. The contribution of this thesis is in the following four
aspects.

1. Dynamic Verifiable Searchable Encryption for Multi-user Access. In a Searchable
Symmetric Encryption scheme, the data owner is exactly the data user due to the
feature of symmetric-key encryption. With its symmetric key, the data owner pro-
cesses each document’s included keywords to be uploaded to get an index item.
Then the whole index table together with all documents is submitted to the cloud
server. Later on, the owner (user) can launch a query by sending the token com-
puted based on the keyword of interest with its symmetric key. Without knowing
the key, the server can still locate the index item and the target documents implied
by the received token. Although Searchable Symmetric Encryption enables key-
word search in a single-user setting in a way above, it is still tricky for the data
owner/sender to share data with others. Indeed, it can directly share the symmet-
ric key with all the intended data users/receivers recklessly. However, it means the
system has to suffer the threats of key leakage and difficulty of traitor trace. Be-
sides, existing searchable symmetric encryption schemes are static and not suitable
for practical cloud storage services demanding data update. Third, the Searchable
Symmetric Encryption needs to offer verifiability to convince data users/receivers
that the server’s returned results are accurate and complete. Moreover, the con-
ventional single-keyword index is not suitable for fine queries like multi-keyword
search requests.

In this thesis, a primitive called Multi-user Verifiable Searchable Symmetric En-
cryption with update functions is proposed to cater for the multi-user access. Then
the security requirements are presented for MVSSE accordingly. Concrete con-
struction is proposed following our formal definition. The index is not built on a
single keyword but on two cross-over keywords to accelerate a search with mul-
tiple keywords. In terms of security, we prove the equality between our security
definition and the UC-security, and the UC-security of our construction, imply-
ing that our construction satisfies the proposed security requirements. Besides, ex-
tensions including boolean queries and user addition and revocation are appended

1.2. MOTIVATIONS AND CONTRIBUTION 7

to bring more possibilities to our construction. Finally, the performance evalua-
tion shows this dynamic Multi-user Verifiable Searchable Symmetric Encryption
scheme is practical and advantageous over existing works.

2. Versatile Message-locked Encryption with Keyword Search. The Message-Locked
Encryption is a cryptographic primitive proposed for performing removing data re-
dundancy. A token is computed by the owner based on the message itself. Since
the same message renders the same token, the token is used for deduplication by
comparing it with existing tokens in cloud storage. Considering searchable encryp-
tion is also a token-driven primitive, if a Message-Locked Encryption scheme is
equipped with the keyword search function, another token must be computed in
addition to the message-locked token. Simply combining these two primitives may
lead to unexpected problems such as linear growth of storage, computational and
communication burden, difficulties in collaborative work on multiple modules, and
security risks. Moreover, for a source-based deduplication scheme, the data owner
has to convince the server of its ownership of a document whose tag is uploaded,
i.e., Proof of Ownership (PoW). Third, to enhance user experience, an application
is preferable to allow users to check storage correctness and availability if possible,
i.e., Proof of Storage (PoS).

In this thesis, we first investigate the weakness of simply combining the Message-
Locked Encryption and the searchable encryption. The formal definition and the
workflow of Message-Locked Searchable Encryption is presented as well as its se-
curity models. With the help of two servers, i.e., a key server and a storage server,
a Message-Locked Searchable Encryption scheme is designed to realize both dedu-
plication and keyword search. The number of tokens is not doubled for providing
both functions and tags for deduplication are re-used for multi-keyword search, sav-
ing computational cost and storage resources. It supports not only multi-keyword
search but also negative-keyword search, rendering flexible queries. According to
the formalized security models, the security proofs are given, demonstrating that
our scheme meets the claimed security. Moreover, an extension on the scheme of-
fering Proof of Storage against untrusted servers is proposed to enrich our scheme’s
functions. Finally, efficiency and function comparison is performed based on ex-
perimental and theoretical evaluations to demonstrate that our scheme outperforms
the direct combination.

3. Broadcast Authenticated Encryption with Keyword Search. In a typical Public-key
Encryption with Keyword Search scheme, the data user publishes its public key
and keeps the secret key. Any data owner who would like to share documents with
the data user processes the containing keywords with the public key to generate
the searchable ciphertext and uploads it to the cloud server. The data user later

1.2. MOTIVATIONS AND CONTRIBUTION 8

initiates the search by computing a trapdoor based on its keywords of interest and
submitting it to the server. The server then checks each stored searchable ciphertext
with the received trapdoor and returns matching results to the data user. First of
all, to enable each user to query the same keyword, the same number of searchable
ciphertexts as that of users should be generated repetitively, consuming unnecessary
additional computational and storage resources. Second, many existing Public-key
Encryption with Keyword Search schemes are threatened by the Keyword Guessing
Attack, in which the searchable ciphertext of any keywords can be made and used
for matching eavesdropped trapdoors to speculate potential keywords. In addition,
some schemes supporting multi-user access require a pre-defined fixed keyword set
that heavily limits the system scalability.

In this thesis, striving to develop an approach to realize multi-user especially
multi-reader setting in the scope of PEKS, a new cryptographic primitive called
Broadcast Authenticated Encryption with Keyword Search (BAEKS) is introduced
as well as its security models. It works in a broadcast mode, where the data owner
only needs to process keywords included in its data uploaded once for all intended
users who are authorized to access data to generate the only piece of searchable
ciphertext used for future queries from all these users. That means computation and
communication for sharing data with multiple data users becomes more affordable.
Moreover, the searchable ciphertext generation demands the data owner’s secret
key to authenticate the keyword so that parties other than the data owner cannot
freely perform testing. In terms of security definition, besides formalizing data and
keyword privacy requirements, anonymity is also considered, which is rarely taken
into consideration regarding keyword search. A BAEKS scheme is proposed and
proved secure due to the security definitions. Finally, detailed computational and
communication overhead comparison is performed as well as function comparison
with existing works, demonstrating our scheme’s advantages over other techniques.

4. Privacy-Preserving Searchable Encryption for Distributed Systems. As far as we
know, the Searchable Symmetric Encryption usually works in a single-writer/single-
reader setting where the writer is the reader. The Public-key Encryption with Key-
word Search often works in a multi-writer/single-reader setting where data owners
use the target data user’s public key to encrypt keywords. Later, only this data user
can search. In terms of each primitive’s limitation, it seems pretty challenging and
intricate to construct a keyword search scheme in a multi-writer/multi-reader set-
ting with conventional approaches. Moreover, distributed systems are advantageous
with their rapid response to users’ request and flexible system layout. However, the
keyword search applications are often designed for a centralized server instead of
a distributed one. Besides, multi-keyword queries undoubtedly win more favours

1.3. THESIS ORGANIZATION 9

than single-keyword queries.

In this thesis, a primitive called Searchable Encryption based on Efficient Privacy-
preserving Outsourced calculation framework with Multiple keys (SE-EPOM) is
proposed as well as its formal security definitions. A by-product called Subset

Deciding Mechanism is first designed and works as the protocol’s building block.
Due to the proposed syntax, a privacy-preserving keyword search protocol that is
specially designed for and significantly taking advantage of distributed systems is
presented and proved secure. It realizes the favourable multi-writer/multi-reader
setting with the help of the multi-server architecture. The binary strings are em-
ployed to represent multiple keywords so that the more refined keyword search is
achieved by only one query. Finally, we evaluate our scheme’s performance and
compare it with existing works regarding efficiency and functions, showing our
scheme is premium and practical.

1.3 Thesis Organization

This thesis will be organized as follows.
In Chapter 2, notations and terminologies utilized throughout this thesis are listed

and explained. The group, ring, field, and bilinear group are reviewed as well as hard
problems. Besides, cryptographic primitives related to this thesis’ cryptosystems such as
Collision-Resistant hash function and Blind Signature are included.

In Chapter 3, a verifiable multi-user searchable encryption is designed and proved se-
cure concerning Universal Composability. Existing research about multi-user searchable
encryption is first reviewed. The blank of verifiable multi-user searchable encryption with
non-single keyword index, update function, and accountable access control is pointed out.
The formal definition of Multi-user Verifiable Searchable Symmetric Encryption followed
by a concrete scheme meeting the demands as mentioned above is proposed. The security
is finally proved based on the mode of Universal Composability.

Chapter 4 includes a Message-Locked Searchable Encryption scheme. When tracing
back to existing Message-Locked Encryption constructions, it is noted that they are al-
ways single-functional and thereby fail to keep up with the pace of thriving cloud ap-
plications. Thus, a Message-Locked Searchable Encryption scheme is developed, which
provides a deduplication function and supports keyword search. It is proved resistant to
duplicate faking attacks and brute-force attacks. An extension of the scheme is further
proposed to verify the usability and correctness of cloud storage content.

Chapter 5 realizes the keyword search in broadcast mode. The typical Public-key En-
cryption with Keyword Search is limited to granting only a single reader visiting the same
searchable ciphertext, which means that the writer has to duplicate its encryption to gen-

1.3. THESIS ORGANIZATION 10

erate distinct searchable ciphertexts for different authorized readers. We are not on the
same ciphertext as the Broadcast Encryption. Besides, the typical Public-key Encryption
with Keyword Search suffers the Keyword Guessing Attacks. A broadcast authenticated
encryption with keyword search is developed to escape from the mentioned dilemma of
efficiency and security. In addition to authorizing the keyword so that adversaries other
than the data owner cannot manufacture a fake searchable ciphertext, receiver anonymity
of both searchable ciphertext and trapdoor is also achieved. Furthermore, the keywords
encrypted and queried can be arbitrary and not limited to a predestinate universal key-
word.

A privacy-preserving distributed system with multi-keyword search is presented in
Chapter 6. After looking over existing keyword search schemes, we find no suitable multi-
keyword search application for a distributed architecture supplying multi-writer/multi-
user mode, search pattern hiding, and Keyword Guessing Attack resistance. Therefore,
a formal definition of Searchable Encryption based on Efficient Privacy-preserving Out-
sourced calculation framework with Multiple keys is sketched, followed by its security
requirements. A Subset Decision Mechanism telling whether one set is the subset of
the other given their binary representations is proposed and employed in the later key-
word search construction. Then with the help of Efficient Privacy-preserving Outsourced
calculation framework with Multiple keys (EPOM) and the binary characterization of
keywords, a distributed system in the multi-writer/multi-reader setting supporting multi-
keyword queries is implemented. Finally, its data and search pattern privacy are proved.

The conclusion of this thesis and future work are discussed in Chapter 7.

Chapter 2

Preliminaries

This chapter introduces preliminaries, foundations of algebra, complexity assumption,
and cryptographic tools utilized in this thesis. More details can be found in [45–48].

2.1 Miscellaneous Notations

In this thesis, x ∈R S denotes that x is chosen independently and uniformly at random
from a finite set or a distribution S. | · | or (L)(·) denotes the bit-length of the string · or
the number of elements of the set ·. str1||str2 denotes the concatenation of the string str1

and the string str2. PPT denotes Probabilistic Polynomial Time. PKi or pki denotes the
public key of party i and SKi or ski denotes the secret key of party i. C or CT denotes the
ciphertext, and [[·]]pk denotes the encryption of · under the public key pk.

By convention, w denotes a keyword, n denotes the number of stored documents, m or
µ denotes the number of keywords, and D or M denotes a document or a message. M

denotes a message/document space. We use D or DB to denote all stored documents,
i.e., DB = D = {D1, · · · ,Dn} or DB = D = {M1, · · · ,Mn} denotes document set whose
documents will be uploaded to the server and W = {w1, · · · ,wm} or W = {wµ−1, · · · ,w0}
denotes the universal keyword set. DB[w] denotes documents which include the keyword
w and Q denotes the keyword set represented in a search query. Index = {ei, j} is an n

column matrix such that:

ei, j =

{
1 if wi is contained in D j

0 otherwise

D(w) denotes the set of documents which contain the keyword w and List(w) = {i|Di

contains keyword w} denotes the set of sequence number of documents. We use Wid to
denote the keyword set whose elements are keywords contained in the document with
identifier id.

f lag(wi,M j) denotes whether the keyword wi is contained in a document M j and is

11

2.2. FOUNDATIONS OF ALGEBRA 12

defined as follows:

f lag(wi,M j) =

{
1 if wi ∈M j,

0 otherwise.

Wx denotes the keyword set represented by the decimal integer x. td denotes the trap-
door and SC denotes the searchable ciphertext. (xµ−1, · · · ,x0) is an unsigned binary rep-
resentation of a positive decimal integer x where xµ−1 is the most significant bit, x0 is the
least bit. ¬x denotes the complement of x.

We use a decimal integer T ∈ {0, · · · ,2µ − 1} to denote the plaintext of searchable
ciphertext, whose binary representation is (Tµ−1, · · · ,T0), indicating the inclusion rela-
tionship between each keyword of W and a document D where

Ti =

{
1 if wi is contained in D,

0 otherwise.

WT = {wi|wi ∈W ,Ti = 1} denotes the keyword set corresponding to T .
In a search query launched by a request user (RU), we use a decimal integer t ∈
{0, · · · ,2µ −1} to denote the plaintext of trapdoor, whose binary representation is (tµ−1,

· · · , t0), indicating the inclusion relationship between each keyword of W and RU’s inter-
est where

ti =

{
1 if RU is interested in wi,

0 otherwise.

Wt = {wi|wi ∈ W , ti = 1} denotes the keyword set corresponding to t. Obviously, if t

matches T , Wt ⊆WT holds.
Other notations in this thesis are explained as they are introduced or referenced for the

first time.

2.2 Foundations of Algebra

In this section, we will briefly review the definitions of group, ring, and field introduced
in [45, 48].

2.2.1 Group

Definition 1 (Group [45]). A group is a set G together with a binary operation ◦ satisfying
the following properties:

• Closure. For all g,h ∈G, g◦h ∈G.

• Identity. There exists an element e∈G such that for all element g∈G, e◦g = g◦h.

2.3. BILINEAR MAP 13

• Inverses. For each element g ∈ G, there exists an element h such that g ◦ h = e =

h◦g, called the inverse of g.

• Associativity. For all g,h,k ∈G, (g◦h)◦ k = g◦ (h◦ k).

We generally omit the operation ◦ and directly call G a group.
G is called a finite group if it has a limited number of elements. We denote |G| as the

order of G, i.e., the number of elements of G.

Definition 2 (Abelian Group [45]). We say a group is abelian if it additionally satisfies

• Commutativity. For all elements g,h ∈G, g◦h = h◦g.

Definition 3 (Cyclic Group [45]). We say G is a cyclic group if there exists an element
g ∈ G with the order l which is the order of G such that G = {gi|i = 0, · · · , l− 1}. We
denote G= 〈g〉, i.e., G is generated by g, one of the generators.

2.2.2 Ring and Field

Definition 4 (Ring [48]). A ring refers to a set R together with two binary operations +
and · such that:

• Abelian group. Under the addition +, (R,+) is an abelian group, with 0 as its
additive identity.

• Closure and associativity. Under the multiplication ·, for all g,h,k ∈ R, g×h ∈G,
(g×h) · k = g · (h · k), and there exists a multiplicative identity 1.

• Distributivity. For all g,h,k ∈ R, g · (h+ k) = g ·h+g · k.

Definition 5 (Communicative Ring [48]). A ring (R,+, ·) is called communicative if it
further satisfies:

• Communcativity. For all g,h ∈ R, g ·h = h ·g.

Definition 6 (Field [48]). We say (F\{0},+, ·) is a field if without the 0 element of a
communicative ring (F,+, ·), it forms a group under the multiplication.

2.3 Bilinear Map

Definition 7 (Bilinear Map [49]). Let G1, G2, and GT be three groups with the same
prime order p. Let g and h respectively be the generators of G1 and G2. We say the map
e : G1×G2→GT is a bilinear map/pairing if the following properties hold:

• Bilinearity: for any a,b ∈ Zp, g ∈G1, h ∈G2, e(ga,hb) = e(g,h)ab.

2.4. COMPLEXITY ASSUMPTIONS 14

• Non-degeneracy: for any generators g ∈ G1 and h ∈ G2, e(g,g) 6= 1GT where 1GT

is the identity of GT .

• Computability: for any g ∈G1 and h ∈G2, e(g,h) can be computed efficiently.

Definition 8 (Basic Types of Bilinear Pairing [50]). Pairing instances could be classified
into the following three types:

• Type 1: G1 =G2;

• Type 2: G1 6= G2 but there exists an efficiently computable homomorphism map
φ : G2→G1;

• Type 2: G1 6= G2 and there exist no efficiently computable homomorphisms be-
tween G1 and G2.

The Type 1 pairing where G1 = G2 is also known as the symmetric pairing, while the
Type 2 and Type 3 where G1 6= G2, are said to be asymmetric. These different pairings
are generated from different kinds of elliptic curves. Note that, in this thesis, only the
symmetric pairing is used to construct our cryptosystems.

2.4 Complexity Assumptions

In this section, complexity assumptions related to this thesis are reviewed.

2.4.1 Discrete Logarithm Assumption

A large number of cryptosystems originate from the difficulty of calculating Discrete
Logarithm (DL) in finite fields [51]. The definition of DL assumption is described as
follows.

Definition 9 (Discrete Logarithm (DL) Assumption [51]). Given a security parameter λ ,
let G= 〈g〉 be a cyclic multiplicative group that is generated by a generator g and p is its
prime order so that |p|= λ . Upon inputs g and h ∈R G, the discrete logarithm assumption
holds if there is no PPT adversary A that computes x ∈ Zp such that h = gx with the
advantage

AdvDL
A = Pr[x←A (g,h)]

where the probability is taken over the random numbers h ∈G and coins by the adver-
sary A .

2.4. COMPLEXITY ASSUMPTIONS 15

2.4.2 Computational Diffie-Hellman Assumption

Closely related to the DL assumption, the Computational Diffie-Hellman (CDH) assump-
tion was proposed, followed by a key exchange protocol [52]. The CDH assumption is
described below.

Definition 10 (Computational Diffie-Hellman (CDH) Assumption [52]). Given a security
parameter λ , let G= 〈g〉 be a cyclic multiplicative group that is generated by a generator
g and p is its prime order so that |p| = λ , and x,y ∈R Zp. Upon inputs g, gx and gy,
the computational diffie-hellman assumption holds if there is no PPT adversary A that
computes gxy with the advantage

AdvCDH
A = Pr[gxy←A (g,gx,gy)]

where the probability is taken over the random numbers x,y ∈ Zp and coins by the
adversary A .

2.4.3 Decisional Diffie-Hellman Assumption

As a stronger variant of CDH assumption, Decisional Diffie-Hellman (DDH) assumption
was introduced in order to bound further the information an eavesdropper learns in a key
exchange protocol [53]. The DDH assumption is reviewed below.

Definition 11 (Decisional Diffie-Hellman (DDH) Assumption [52]). Given a security pa-
rameter λ , let G= 〈g〉 be a cyclic multiplicative group that is generated by a generator g

and p is its prime order so that |p| = λ , and x,y,z ∈R Zp. Upon inputs g, gx, gy and gz,
the decisional diffie-hellman assumption holds if there is no PPT adversary A that distin-
guishes the distribution of (g,gx,gy,gxy) from that of (g,gx,gy,gxy) with the advantage

AdvDDH
A = |Pr[1←A (g,gx,gy,gxy)]−Pr[1←A (g,gx,gy,gz)]|

where the probability is taken over the random numbers x,y,z ∈ Zp and coins by the
adversary A .

2.4.4 Computational Bilinear Diffie-Hellman Assumption

An assumption called the Computational Bilinear Diffie-Hellman (CBDH) assumption
was presented in [49]. The CBDH assumption is as follows.

Definition 12 (Computational Bilinear Diffie-Hellman (CBDH) Assumption [49]). Given
a security parameter λ , let G and GT be cyclic multiplicative groups where G = 〈g〉 is
generated by the generator g , p is their prime order such that |p| = λ , e : G×G→ GT

is a bilinear map and a,b,c ∈R Zp. Upon inputs g, ga, gb, and gc, the computational

2.4. COMPLEXITY ASSUMPTIONS 16

bilinear Diffie-Hellman assumption holds if there is no PPT adversary A that computes
the e(g,g)abc) with the advantage

AdvCBDH
A = Pr[e(g,g)abc←A (g,ga,gb,gc)]

where the probability is taken over the random numbers a,b,c ∈ Zp and coins by the
adversary A .

2.4.5 Decisional Bilinear Diffie-Hellman Assumption

Another assumption called the Decisional Bilinear Diffie-Hellman (DBDH) assumption
was introduced in [49]. The DBDH assumption is as follows.

Definition 13 (Decisional Bilinear Diffie-Hellman (DBDH) Assumption [49]). Given a
security parameter λ , let G and GT be cyclic multiplicative groups where G = 〈g〉 is
generated by the generator g , p is their prime order such that |p|= λ , e : G×G→GT is
a bilinear map and a,b,c ∈R Zp. Upon inputs g, ga, gb, gc, and gz, the decisional bilinear
Diffie-Hellman assumption holds if there is no PPT adversary A that distinguishes the
distribution of (g,ga,gb,gc,gabc) from that of (g,ga,gb,gc,gz) with the advantage

AdvDBDH
A = |Pr[1←A (g,ga,gb,gc,e(g,g)abc)]−Pr[1←A (g,ga,gb,gc,e(g,g)z)]|

where the probability is taken over the random numbers a,b,c,z ∈ Zp and coins by the
adversary A .

2.4.6 l - Bilinear Diffie-Hellman Exponent Assumption

An assumption called the l-Bilinear Diffie-Hellman Exponent (l-BDHE) assumption was
stated in [54]. The l-BDHE assumption is described as follows.

Definition 14 (l-Bilinear Diffie-Hellman Exponent (l-BDHE) Assumption [54]). Given
a security parameter λ , let G and GT be cyclic multiplicative groups where G = 〈g〉 is
generated by the generator g , p is their prime order such that |p|= λ , e : G×G→GT is
a bilinear map, α ∈R Zp and h ∈R G. Upon inputs h, g, gα , gα2

, · · · , gα l
, gα l+2

, · · · , gα2l
,

the l-bilinear Diffie-Hellman exponent assumption holds if there is no PPT adversary A

that computes the e(g,h)α l+1
with the advantage

Advl−BDHE
A = Pr[e(g,h)α l+1

←A (h,g,gα ,gα2
, · · · ,gα l

,gα l+2
, · · · ,gα2l

)]

where the probability is taken over the random numbers α ∈ Zp, h ∈ G, and coins by
the adversary A .

2.5. CRYPTOGRAPHIC TOOLS 17

2.5 Cryptographic Tools

2.5.1 Collision-Resistant Hash Function

Generally, a hash function maps an arbitrary-length string, compresses it and outputs a
shorter one [45].

Definition 15 (Hash Function [45]). A hash function refers to a pair of PPT algorithms
(Gen,H), where:

• Gen is a probablistic algorithm taking the security parameter λ as input and output-
ing a key k. It is implicitly assumed that 1λ is included in k.

• H is a deterministic algorithm taking the key k and any string s ∈ {0,1}∗ as inputs,
and outputing a string of l(λ)-length, i.e., Hk(s) ∈ {0,1}l(λ), where l is a polyno-
mial.

If for every λ and k, Hk is defined over the input whose length is l′(λ) such that l′(λ)>

l(λ), then (Gen,H) is called a fixed-length hash function with length parameter l′.

The security game [45] between an adversary A and a challenger C for hash functions
is briefed as follows:

KeyGen. C runs Gen(1λ)→ k and sends k to A .
Output. A outputs two strings s and s′, and wins the game if s 6= s′ and Hk(s) 6= Hk(s′).

Definition 16 (Collision-Resistant Hash Function). We say a hash function (Gen,H) is
Collision-Resistant (CR) if for all PPT adversaries there exists a negligible function ε(λ)

such that

εCR(λ) = Pr[A wins].

is negligible.

2.5.2 RSA Accumulator

RSA Accumulator has helped offer verifiability to data users. Here we briefly review the
usage and security basis of RSA accumulators employed in [13].

Definition 17 (RSA Accumulator [13]). Let P = 2P′+ 1 and Q = 2Q′+ 1 be two large
primes such that P′ and Q′ are also primes and |PQ|> 3λ . λ is a security parameter. Let
N = PQ and let

QRN = {a|a = u2 mod N for some u ∈ Z∗N}.

Then QRN is a cyclic group of size (P−1)(Q−1)/4. Let v be a generator of QRN . We
say that a family of functions F = { f : A→ B} is two-universal if Pr[f (u1) = f (u2)] =

2.5. CRYPTOGRAPHIC TOOLS 18

1/|B| for all u1 6= u2 and for a randomly chosen function f ∈ F . For a set E = {y1, · · · ,yR}
with yi ∈ {0,1}λ , the RSA accumulator works as follows.

1. For each yi, the prover chooses a prime ui such that f (ui) = yi randomly. Let
prime(yi) denote such a prime ui. Then computes the accumulated value of E =

{y1, · · · ,yR} as
Acc(E) = v∏

R
i=1 prime(yi)mod N,

and sends Acc(E) to the verifier.

2. Later the prover proves that y j ∈ E to the verifier as follows. It computes

π j = v∏i 6= j prime(yi)mod N

and sends π j and prime(y j) to the verifier.

3. The verifier verifies that

Acc(E) = (π j)
prime(y j)mod N.

In fact, when computing prime(y), they will use PRF0(k0,y) as the randomness. k0 is
chosen randomly and PRF0 : {0,1}|k0|×{0,1}λ → {0,1}λ so that they can get the same
prime(y) locally.

Proposition 1 (Strong RSA Assumption [13]). Given N,v, f and E = y1, · · · ,yn, it is hard

to find y /∈ E and π , such that

π
prime(y) = Acc(E) mod N (3)

under the strong RSA assumption.

2.5.3 Blind Signature

The digital signature, as a cryptographic primitive, was proposed in [52]. It is known to
convince the receiver that a message was from a specific party. The formal definition of
digital signature can be found in [55] as follows.

Definition 18 (Signature [55]). Digital Signature consists of the following algorithms:
KeyGen(1λ)→ (pk,sk): given the security parameter λ it outputs the public key pk

and the secret key sk.
Sign(M,sk)→ σ : given a message M and the secret key sk, it outputs the signature σ

for M.
Verify(M, pk,σ)→ 1/0: given the message M, the public key pk, and the signature σ ,

it outputs 1 if σ is the signature of M by sk and 0 otherwise.

2.5. CRYPTOGRAPHIC TOOLS 19

Correctness. The correctness requires that for any key pairs (pk,sk)← KeyGen(1λ) and
message M, we have that

Verify(pk,M,Sign(M,sk))→ 1.

Unforgeability. Unforgeability aims to make an adversary’s forgery impossible even the
adversary is given the public key and can query the signing oracle. Existential Unforge-
ability under adaptive chosen message attacks (EU-CMA) can be briefed in a security
game between an adversary A and a challenger C .

Setup. C runs KeyGen(1λ)→ (pk,sk), and sends pk to A .
Query. A adaptively sends Mi to C for i = 1, · · · ,q. C runs Sign(M,sk)→ σi and

returns σi to A .
Output. A outputs (M∗,σ∗) and wins the game if M has not been quried for signature

and runs Verify(pk,M,σ)→ 1.

Definition 19. We say that a signature scheme is (t,q,ε,λ) existentially unforgeable
against adaptive chosen message attacks (EU-CMA) if for all t-time algorithms A that
make q signature queries,

AdvEU−CMA
A = Pr[Verify(pk,M,σ)→ 1]< ε.

Blind Signature (BS) [56] is a cryptographic primitive introduced by Chaum in 1984. It
is used for hiding original message content from the signer and has been widely adopted
in scenarios where the message owner and the signer are different parties.

Definition 20 (Blind Signature). Blind Signature consists of the following algorithms:
KeyGen(1λ)→ (pk,sk): given the security parameter λ , it outputs the public key pk

and the secret key sk.
Blind(M,r, pk)→M′: given the message M, a blinding factor r and pk, it outputs the

concealed message M′.
Sign(M′,sk)→ s′: given the blinded M′ and the secret key sk, it outputs the signature

s′ for M′.
Unblind(s′,r, pk)→ s: given the signature s′, the random number r, and the public key

pk, it outputs a unblinded signature s for M.
Verify(pk,M,s)→ 1/0: given the message M, the public key pk, and the signature s, it

outputs 1 if s is the signature of M by sk and 0 otherwise.

Correctness. The correctness of the blind signature requires that for any key pairs (pk,sk)

← KeyGen(1λ), message M, and blinding factor r, we have that

Verify(pk,M,Unblind(Sign(Blind(M,r, pk),sk),r, pk))→ true.

2.5. CRYPTOGRAPHIC TOOLS 20

Blindness. In a blind signature scheme, a participating party is required to sign a message
from another party without learning its content. In general, the message owner needs
to mask the message with a blinding factor before asking for a signature. Blindness
[56] could be illustrated in the following security game between an adversary A and a
challenger C .

Setup. C runs KeyGen(1λ)→ (pk,sk), and sends them to A .
Challenge. A chooses two messages m0 and m1, and sends them to C . C randomly

chooses b ∈ {0,1}, blinds both messages, interacts with A , and sends the unblinded
signatures (sb,s1−b) to A .

Output. A outputs the guess b′ and wins the game if b′ = b.

Definition 21 (Blindness [57, 58]). We say that a signature scheme satisfies blindness if
for all PPT algorithms A , the advantage

AdvBlindness
A = Pr[A wins− 1

2
].

is negligible.

2.5.4 Real or Random Security

Real Or Random (ROR) security [59] for the symmetric encryption SE= {G,E,D} depicts
the indistinguishability of the encryption of a message and the encryption of a random
message of the same length. The game depicting the ROR security is defined as follows:

Setup. The challenger C randomly chooses b ∈ {0,1} and runs G(1λ)→ K.
Challenge. The adversary A sends any message m of its choice to the challenger C . C

runs E(K,m)→C0 if b = 0; runs E(K,{0,1}|m|)→C1 otherwise. Then C returns Cb.
Output. The adversary A outputs its guess b′ for b.

Definition 22. We say that the symmetric encryption SE is ROR secure in the above
distinguishing game ROR, if for any probabilistic polynomial-time (PPT) adversary A ,
the advantage

εROR(λ) = |Pr[A ROR−0 outputs 1]−Pr[A ROR−1 outputs 1]|

is negligible.

2.5.5 Pseudo-Random Generator

Pseudo-Random Generator (PRG) is a deterministic algorithm that takes a short random
seed as the input, and outputs a longer pseudo-random string [45].

2.5. CRYPTOGRAPHIC TOOLS 21

Definition 23. [45] l(·) is a polynomial and G is a polynomial-time algorithm with the
input length n and the output length l(n). G is a pseudo-random generator if the following
two conditions hold:

1. Expansion: for any n, l(n)> n.

2. Pseudo-randomness: for all polynomial-time distinguisher D , its advantage

εPRG(λ) = |Pr[D r outputs 1]−Pr[DG(s) outputs 1]|

is negligible, where r ∈ {0,1}l(n) is chosen uniformly at random, the seed s ∈
{0,1}n is chosen uniformly at random and the probabilities are taken over the ran-
dom coins used by D and the choice of r and s.

2.5.6 Broadcast Encryption

As a cryptographic primitive proposed by Fiat et al. [60], Broadcast Encryption (BE)
is designed for the application scenario that an encryptor broadcasts the ciphertext of a
message for a subset of all registered users, and only the users in the subset are able to
decrypt and learn the message while users out of the subset cannot.

Definition 24 (Broadcast Encryption [61]). Broadcast Encryption scheme contains the
following four algorithms.

Setup(1λ)→ params: taking the security parameter λ , it outputs the public parameters
params.

KeyGen(params,n)→{di}n
i=1: taking the public parameter params and the number of

system users n, it outputs all users’ secret keys di for i = 1, · · · ,n.
Enc(params,S)→ (K,Hdr): taking the public parameter params and the intended

user subset S , it outputs the message encryption key K ∈K and the header Hdr, where
K is the message key space and Hdr is the broadcast ciphertext of K.

Dec(params,di,Hdr)→ K/⊥: taking the public parameter params, a user secret key
di, and the header Hdr, it outputs the message encryption key K if i ∈S or ⊥ otherwise.

Correctness. The correctness is assured that for any S ⊆ {1, · · · ,n} and any i ∈S , if
Setup(1λ)→ params, KeyGen(params,n)→{di}n

i=1, and Enc(params,S)→ (K,Hdr),
then Dec(params,di,Hdr)→ K.
Security. The security definition of broadcast encryption formulated by Boneh et al. [61]
is depicted with the following game between an adversary A and a challenger C .

Init. A chooses a set S ∗ ⊆ {1, · · · ,n}.
Setup. C runs Setup(1λ)→ params and KeyGen(params,n)→ {di}n

i=1, and sends
params, n, and all di for i ∈S ∗ to A .

2.5. CRYPTOGRAPHIC TOOLS 22

Phase1. A adaptively queries C with (i,S ,Hdr) where i ∈S and S ⊆S ∗. C runs
Dec(params,di,Hdr)→ K and returns K to A .

Challenge. C runs Enc(params,S ∗)→ (K,Hdr∗), chooses a random bit b ∈ {0,1},
sets Kb = K and a random K1−b ∈K , and returns (Hdr∗,K0,K1) to A .

Phase2. A adaptively interacts with C as in Phase1 with one more constraint that
Hdr 6= Hdr∗.

Guess. A outputs the guess b′ for b and wins the game if b′ = b.

Definition 25. We say that a Broadcast Encryption scheme is (t, ε, n, q) - secure/
Indistinguishable against adaptive Chosen Ciphertext Attacks (IND-CCA2) if for all t-
time algorithms A that make q decryption queries,

AdvIND−CCA2
A (λ) = |Pr[A wins]− 1

2
|< ε.

2.5.7 Universally Composible Security

Universally Composable (UC)-security, which was introduced in [62], is a powerful tool
to measure protocol security. If a protocol is UC-secure, then this protocol’s security
properties could be maintained under general protocol composition.

In general, a UC-security framework has three roles: an environment Z , involved par-
ties Pi(i = 1, · · · ,n) and an adversary A . In addition, an ideal functionality F should
be defined in the UC-security framework. Z is an environment outside F , Pi and A ,
which gives inputs to parties in the framework, reads outputs from parties, interacts with
A and tries to distinguish real-world scenarios from ideal world scenarios. Involved
parties Pi(i = 1, · · · ,n) in the framework are regarded as dummy ones who could do noth-
ing but forwarding inputs they received from Z to the functionality F and forwarding
outputs they received from F to Z as well. F is a trusted powerful ideal functional-
ity which could complete any complex computation of the protocol for dummy parties
Pi(i = 1, · · · ,n).

We say that Σ securely realizes F if for any A there exists an ideal adversary S such
that no environment Z could tell whether it is interacting with A and parties running the
protocol in real world, or with S and dummy parties whose computation is undertaken
by F in ideal world.

2.5.8 Message-Locked Encryption

To remove redundancy of encrypted content, a new concept called Message-Locked En-
cryption (MLE) was first formalized by Bellare et al. [63] though there was a similar
primitive called Convergent Encryption (CE) [64]. In MLE, the message encryption key
is generated from the message itself, and the same message renders the same key. Then the

2.5. CRYPTOGRAPHIC TOOLS 23

deterministic encryption generates the same ciphertext, which leads to the same tag/token.
Finally, by comparing tags/tokens, the deduplication can be easily performed.

Definition 26 (Message-Locked Encryption [63]). Message-Locked Encryption scheme
contains the following four algorithms.

Setup(1λ)→ params: taking the security parameter λ , it outputs the public parameters
params.

KeyGen(params,M)→ K: taking the public parameter params and the message M ∈
M where M is the message space, it outputs the message-locked key K.

Enc(params,M,K)→C: taking the public parameter params, the message M, and the
message-locked key K, it outputs the ciphertext C.

Dec(params,K,C)→M/⊥: taking the public parameter params, the message-locked
key K, and the ciphertext C, it outputs the message M if K is generated from M or ⊥
otherwise.

TagGen(params,C)→ T : taking the public parameter params and the ciphertext C, it
outputs the tag T for deduplication.

Unpredictable Source. The min-entropy of a random variable X is H∞(X) =−log(maxx

Pr[X = x]), then the guessing probability of X is GP(X) = maxxPr[X = x] = 2−H∞(X).
Given a random variable Y , the conditional guessing probability GP(X |Y) of the varibale
X with the conditional min-entrpy H∞(X |Y) is GP(X |Y) = ∑y Pr[Y = y] ·maxxPr[X =

x|Y = y] = 2−H∞(X |Y).
A source is a polynomial algorithm M which on input 1λ outputs (M,Z) where M is

a message vector over {0,1}∗ and Z ∈ {0,1}∗ is the auxiliary information. arity denotes
the arity of the message vector. In this paper, since our scheme is on file-level, arity = 1.
For i∈ [1,arity], GPM = maxiGP(M[i]|Z) denotes the guessing probability of the source
M . We say that the source M is unpredictable if GPM is negligible.
Tag Consistency. Imagine there are two uploaders, two encrypted files (C1,C2), and their
tags (T1,T2). A malicious uploader sends its encrypted file C1 and a fake tag T2 instead of
T1 to the server. Later when another honest uploader sends C2 with T2, the server mistakes
that C2 is a duplication of C1 by comparing their tags, therefore naturally removing C2 and
marking it as a copy of C1. This is called duplicate faking attacks and Tag Consistency
[63] was proposed to prevent from such attacks and assure the integrity for MLE.
Privacy. The best privacy which MLE can achieve is semantic security when messages are
unpredictable (have high min-entropy), i.e., Privacy against Chosen Distribution Attack
(PRV-CDA) [63]. PRV-CDA can be summarized as the following security game between
an adversary A and a challenger C .

Setup. C runs Setup(1λ)→ params and sends params to A .
Challenge. A chooses two vectors of messages ~M0, ~M1 and auxiliary information Z

from the message space by running M (1λ)→ (~M0, ~M1,Z), and sends them to C . C

2.5. CRYPTOGRAPHIC TOOLS 24

randomly chooses b ∈ {0,1}. For i = 1, · · · , |~Mb|, C runs KeyGen(params,Mb[i])→ K[i]

and Enc(params,Mb[i],K[i])→C[i]. C returns ~C to A .
Guess. A outputs the guess b′ for b and wins the game if b′ = b.

Definition 27. We say that an MLSE satisfies PRV-CDA security in the above game, if
for any unpredictable MLE-valid source M and any PPT adversary A , the advantage

AdvPRV−CDA
MLE,A (λ) = |Pr[A wins]− 1

2
| (2)

is negligible.

Proof of Ownership. MLE is divided into two categorites due to the location where the
deduplication is performed, i.e., source-based deduplication and target-based deduplica-
tion. In the former one, tags are generated and uploaded to the server instead of the whole
piece of encrypted data, while the second one sends the ciphertext to the server, and the
server is responsible for generating tags accordingly. To exclude the malicious data user
who uses partial information obtained in an improper way to claim fake ownership but
has no corresponding ciphertext, an interactive two-party challenge protocol called Proof
of Ownership (PoW) between a prover and a verifier [65] was proposed to help validate
the ownership. Corresponding security game between an adversary A and a challenger
C has been summarized in [66] as follows.

Setup. C generates security parameter λ and the public parameters, and sends the
public parameters to A .

Challenge. C runs M (1λ)→ (M,Z) where M is the message and Z is the auxiliary
information, generates a random challenge Q according to (M,Z), and sends (Q,Z) to A .

Output. A generates a proof P and wins the game if P passes the verification regarding
Q.

Definition 28. We say that a scheme is PoW secure, if for any PPT adversary A and
document M, the probability that

AdvPoW
A (λ) = Pr[A wins]

is negligible.

2.5.9 Distributed Two-trapdoor Public-Key Cryptosystem

Distributed Two-trapdoor Public-Key Cryptosystem (DT-PKC) is an useful tool for deal-
ing with integer operations across different encrypted domains by splitting a strong key
into shares [67], which is based on Partial Homomorphic Encryption (PHE) [68] and
threshold cryptosystems [69], attaining more competitive computation performance than
solutions using Fully Homomorphic Encryption (FHE) [70].

2.5. CRYPTOGRAPHIC TOOLS 25

Definition 29 (DT-PKC [67]). The basic algorithms of DT-PKC are as follows:
KeyGen : Given a security parameter λ , it outputs the strong private key SK, the public

key pki and the weak private key ski of party i.
Encryption (Enc) : Given a message M and the public key pki of party i, it outputs the

ciphertext [[M]]pki .
Decryption With Weak Private Key (WDec) : Given the ciphertext [[M]]pki and the weak

private key ski, it outputs the original message M.
Strong Private Key Splitting (SKeyS) : Given the strong private key SK, it outputs two

partial strong private keys SK(1) and SK(2).
Partial Decryption With Partial Strong Private Key Step One (PSDec1) : Given the ci-

phertext [[M]]pki and the partial strong private key SK(1), it runs the partial decryption
algorithm PDOSK(1)(·) and outputs the step one partial ciphertext CT (1)

i .
Partial Decryption With Partial Strong Private Key Step Two (PSDec2) : Given the step

one partial ciphertext CT (1)
i , the ciphertext [[M]]pki and the partial strong private key SK(2),

it runs the partial decryption algorithm PDTSK(2)(·, ·) and outputs the original message M.
Ciphertext Refresh (CR) : Given the ciphertext [[M]]pki , it outputs another ciphertext

[[M]]′pki
of the same message.

Derived Protocols. The following DT-PKC derived protocols all take the same inputs,
which are two ciphertexts [[x]]pka , [[y]]pkb , the partial strong private keys SK(1), SK(2), and
the public keys pka, pkb, pkc. The syntax is as follows:

Secure Addition Protocol Across Domains (SAD): Given the input, it outputs the ci-
phertext of the addition [[x+ y]]pkc .

Secure Multiplication Protocol Across Domains (SMD): Given the input, it outputs the
ciphertext of the multiplication [[x · y]]pkc .

Secure Less Than Protocol (STL): Given the input, it outputs the ciphertext [[u∗]]pkc

where u∗ = 0 means x≥ y and u∗ = 1 means x < y.
Secure Equivalent Testing Protocol (SEQ): Given the input, it outputs the ciphertext

[[f]]pkc where f = 0 means x = y and otherwise means x 6= y.

2.5.10 Secure Bit-Decomposition Protocol (SBD)

SBD [71] can convert the encryption of x into the encryption of the individual bits of x,
leaking no information about x to both parties. SBD protocol will be one of the building
blocks of our scheme and SBD could be defined as follows:

SBD([[x]]pk)→ ([[xµ−1]]pk, · · · , [[x0]]pk).

Chapter 3

Multi-User Verifiable Searchable
Encryption for Cloud Storage

In this chapter, to avoid simply sharing keys among multiple users in SSE and enable
verifiability on search results, we first formalize a primitive called Multi-user Verifiable
Searchable Symmetric Encryption (MVSSE) as well as the security models. Then a con-
crete scheme is constructed and the simulation-based proof shows the construction is Uni-
versally Composable (UC)-secure. We evaluate the scheme performance as well. Parts of
this work appeared in [72].

3.1 Introduction

Keyword search is divided into two classifications, Public-key Encryption with Keyword
Search (PEKS) and Searchable Symmetric Encryption (SSE). In this chapter, we focus on
the latter, which is more efficient in terms of computation overhead.

Most searchable symmetric encryption schemes are in a single-user setting, where the
client is both the data owner and the data user, and the server is responsible for storing
encrypted data, performing data search, and returning the corresponding result. This kind
of SSE suits the need of single users for storing their sensitive personal data in cloud
storage. However, one of the benefits provided by cloud storage is the convenience for
data sharing and SSE schemes for single users cannot cater for such a need.

3.1.1 Related Work

The rudiment of SSE was proposed by Song et al. [1]. In order to search the location of
target word Wi, they introduced a solution of sequential scan involving stream cipher and
block cipher operations. But the searching time of their scheme is linear to the length of
the document.

26

3.1. INTRODUCTION 27

Figure 3.1: Multi-user SSE

The owner stores a set of encrypted documents C and the corresponding index which is also en-
crypted on the server. An authorised user can generate a token t based on the searching keywords
and sends it to the server. The server will find the corresponding documents C′ and return them
to the user.

Secure indexes were introduced by Goh [7]. He designed a secure index that could ac-
celerate searching by the server. He first formulated a security model for indexes named
Semantic Security against adaptive Chosen Keyword Attack (IND-CKA) for short. This
security model describes the intuition of keeping privacy of document contents: the con-
tent of a document cannot be deduced from its index and indexes of other documents
which have been queried before. His scheme Z− IDX with a secure index, which is con-
structed by Bloom filter, achieves O(1) searching time. In addition, he proved that his
scheme is IND-CKA secure.

Chang et al. [16] pointed out that the initial scheme in [7] still leaks some information,
namely the number of ‘1’ entries in the Bloom filter of one index. They moved on to
propose Privacy-Preserving keyword Searches on remote Encrypted Data (PPSED) to
depict security requirements that a searchable encryption scheme should meet. Then in a
later version of [7], the IND-CKA security model is strengthened by limiting that the two
challenging documents could have different lengths. By that, it achieves stronger security
such that the adversary should not distinguish documents even though they have different
file lengths. This modified one is called IND2-CKA for short. They also modified their
scheme to make it IND2-CKA secure .

Curtmola et al. [5] formulated the security definitions of SSE: non-adaptive indistin-
guishability and adaptive indistinguishability, which are all simulation-based definitions.
Then they constructed their non-adaptive secure SSE-1 scheme and adaptive secure SSE-
2 scheme. They also came up with an extension to realize multi-user SSE by combining
a single-user SSE with a broadcast encryption scheme. However, their scheme is not a
verifiable one.

Kurosawa and Ohtaki [9] provided the definition of verifiable searchable symmetric en-

3.1. INTRODUCTION 28

cryption and its security notions, privacy and reliability. They formulated the ideal func-
tionality F of verifiable searchable symmetric encryption and proved that UC-security
against non-adaptive adversaries is equivalent to their definition of privacy and reliability.
They also fixed a flaw in the SSE-2 of [5], proposed a verifiable SSE scheme and proved
that it satisfies both privacy and reliability, which are equivalent to UC-security. In sub-
sequent work, [13], they also constructed a verifiable SSE that supports file update (i.e.,
modifying, deleting and adding documents).

Cash et al. implemented a keyword-based searchable symmetric encryption scheme
OXT , which supports conjunctive keyword search [11]. The scheme realizes the conjunc-
tive queries with negative keyword search as well. Besides, by converting boolean queries
to Searchable Normal Form (SNF), it can also support performing boolean queries. Ka-
mara et al. presented a keyword-based searchable symmetric encryption scheme IEX

which achieves sub-linear complexity in the worst case of disjunctive queries [15]. In
addition, it leaks less information than [11] in this worst-case disjunctive search. It also
provided an extension scheme BIEX to realize boolean queries and an extension scheme
ZMF to satisfy adaptive security.

In some special scenarios, the user desires to selectively retrieve its data. For example,
after sending a multi-keyword query to the server, the user requests the server to sort the
returning documents by the ascending order of keyword appearing times and return the
top k encrypted files. This demands the server to execute computation on the encrypted
data. Some schemes [73, 74] have realized several analogous functions with the fully
homomorphic encryption (FHE for short) technology.

PEKS, the asymmetric counterpart of SSE, was introduced in [2]. Variants of PEKS
were proposed in subsequent works, reducing search complexity in [75], supporting more
expressive search mode in [76], resisting inside Keyword Guessing Attack (KGA) in [34,
77] and so on.

3.1.2 Our Contribution

In this chapter, we present a Multi-user Verifiable Searchable Symmetric Encryption
(MVSSE) scheme (Fig. 3.1) that allows efficient search over encrypted data that are shared
among multiple users. Compared with the existing SSE schemes that use single-keyword
index and are less efficient in multi-keyword search, i.e., they require to search for ev-
ery keyword once followed by logic operations (conjunction, disjunction, etc.) among
all the returned sets, our MVSSE utilizes a two-keyword index that can significantly ac-
celerate multi-keyword search with various logic operations. Moreover, our scheme also
achieves other desirable features of SSE such as verifiability against a dishonest server
and supporting dynamic data operations. The contributions of our work are four-fold:

• To address the data sharing in a multi-user setting, we formalize a solution for

3.2. FORMAL DEFINITION AND SECURITY MODELS 29

constructing secure MVSSE and formulate the security definitions, namely privacy
and reliability, of MVSSE.

• An efficient scheme is presented, which utilizes a two-keyword index to reduce
the searching time. It is also the first multi-user SSE supporting verifiability and
dynamic operations (i.e., adding, deleting and modifying files) on the cloud storage.

• We define the ideal functionality FMV SSE for MVSSE, which can also be used by
future research on this topic for proving the UC-security of any newly proposed
schemes.

• We prove the equivalence between UC-security and the security requirements, namely
privacy and reliability, of a secure MVSSE. We then prove that our MVSSE scheme
is UC-secure against non-adaptive adversaries, i.e. the scheme securely realizes our
ideal functionality FMV SSE , which implies privacy and reliability.

• We implement our MVSSE scheme and demonstrate its high efficiency in real ex-
periments based on real datasets.

3.1.3 Chapter Organization

We present the formal syntax and security definitions of MVSSE in Section 3.2. A con-
crete construction of MVSSE is shown in Section 3.3 and proved in Section 3.4. Then
extensions on the scheme are given in Section 3.5. We evaluate the scheme performance
in Section 3.6. Finally, in Section 3.7 we summarize this chapter.

3.2 Formal Definition and Security Models

In this section, we present the formal definition and security models of MVSSE schemes.

3.2.1 Formal Definition

A multi-user verifiable searchable symmetric encryption scheme is a protocol that is run
among a data owner, a server and a set of data users as follows.

Setup. Upon input security parameter λ , the owner publishes public parameters params,
sends user private keys ski to user i and server key ks to the server, and keeps master key
mk secret.

Store. Upon input params, mk, document set D and keyword set W , the owner sends
encrypted index I and encrypted document set C = {C1, · · · ,Cn} to the server, and veri-
fiable information A to each user.

TokenGen.

3.2. FORMAL DEFINITION AND SECURITY MODELS 30

1. Upon input a keyword set Ws ⊂W , user i generates trapdoor token and sends it to
the server.

2. The server computes auxiliary information H and sends it to user i.

Search.

1. Upon input H, user i computes search query L and sends it to the server.

2. The server finds encrypted document set C(Ws) and computes partial verifiable in-
formation Tag, then sends them to user i.

3. User i accepts (C(Ws),Tag) and decrypts C(Ws) to get result set D(Ws). Otherwise
it outputs reject.

Modify.

1. Upon input document sequence number k and modified document Dk, the owner i

sends k and encrypted document Ck to the server.

2. The server computes partial verifiable information Tag and sends it to the owner.

3. The owner sends verifiable information A to each user or outputs reject.

Delete. This phase is similar to the phase Modify. Dk is replaced by “delete”.
Add.

1. Upon input new document Dn+1, the owner computes update material α and new
verifiable information A, then sends (Cn+1,α) to the server, sends A to each user.

2. The server stores Cn+1, updates I with α to the new index I ′ and n to n+1.

3. Each user updates A and n to n+1.

3.2.2 Security Models

From intuition, the server can only view interactions (tokens and searching outcomes)
with clients while cannot adaptively decide which keyword will be involved in the next
communication. Thus, assuming non-adaptive adversaries suffices to well portray the
attacks in real situations. More precisely, in the definitions of our games, adversary A (the
server) directly queries the challenger C without considering previous returning results,
i.e., in a non-adaptive way.

We define two games: Gamereal (Fig. 3.2) and Gamesim (Fig. 3.3). The former one
depicts the process of real interaction between an adversary and a challenger running our
protocol, while the latter one depicts the process of interaction between an adversary, a
simulator and a challenger trying to simulate all the same scenarios as the real protocol.

3.3. THE PROPOSED CONSTRUCTION 31

Privacy.

The cloud server is curious about documents and index stored on itself and tries to collect
more information than the permitted leakage. [5] formulated this security definition on
verifiable SSE, and we apply it to our MVSSE whose real game and simulation game are
different from theirs.

From intuition, privacy means the server should not learn any more information than
permitted leakage, such as document size and sequence numbers of desired documents.

Definition 30. We say that an MVSSE satisfies privacy if there exists a PPT simulator
Sim such that

Advpri
A (λ) = |Pr[A outputs b = 1 in Gamereal]

−Pr[A outputs b = 1 in Gamesim]| (1)

is negligible for any PPT adversary A .

Reliability.

Besides considering the leakage in each phase, the server should not successfully forge a
valid returning result (C(w)∗,Tag∗) which could pass the validity check of the client as
well. Now let us define this security notion.

For fixed (D ,W) and search queries w1, · · · ,wq ∈ W arbitrarily, A wins if it could
return (C(wi)

∗,Tag∗) for any query t(wi) such that C(wi)
∗ 6= C(wi) and the validity check

of the Search returns accept for (C(wi)
∗,Tag∗).

Definition 31. We say that a verifiable SSE satisfies reliability if for any PPT A ,

Advrel
A (λ) = Pr[A wins] (2)

is negligible for any (D ,W) and any search queries w1, · · · ,wq.

3.3 The Proposed Construction

In this section, we first give an overview of our design and then present our MVSSE
construction.

3.3.1 An Overview of Our Construction

We start our system prototype on the foundation of a single-user searchable encryption
scheme [13] since it is a dynamic one and our scheme can inherit functionalities of adding,
modifying and deleting documents. To transform it to a scheme in a multi-user setting,
we integrate the broadcast encryption [61] with it, regarding data users as broadcast users.

3.3. THE PROPOSED CONSTRUCTION 32

Real Game (Gamereal)

• In the Setup phase, an adversary A chooses a user set S, for j = 1, · · · ,q0,

1. A chooses user sequence number i and sends (S, i) to the challenger
C .

2. C returns user private key di and broadcast header Hdr to A .

• In the Store phase, A chooses (D ,W) and sends them to C . C returns
(I ,C).

• In the TokenGen phase, for j = 1, · · · ,q1,

1. A chooses keywords wa j ∈W and wb j ∈W and sends them to C .

2. C returns a trapdoor token(wa j ∧wb j) to A .

• In the Search phase, for j = 1, · · · ,q2,

1. A chooses broadcast header Hdr, keywords wa j ∈W and wb j ∈W
and sends them to C .

2. C returns entry location and pad string {label j, pad j} to A .

• In the Modify phase, for j = 1, · · · ,q3,

1. A sends document sequence number and corresponding document
(k,Dk) to C .

2. C returns Ck = Eke(Dk) to A .

• In the Delete phase, for j = 1, · · · ,q4,

1. A sends k to C .

2. C returns Ck = Eke(delete) to A .

• In the Add phase, for j = 1, · · · ,q5,

1. A sends Dn+1 to C .

2. C returns Cn+1 = Eke(Dn+1) to A .

• Finally A outputs a bit b.

Figure 3.2: Real Game

3.3. THE PROPOSED CONSTRUCTION 33

Simulation Game (Gamesim)

• In the Setup phase, an adversary A chooses a user set S, for j = 1, · · · ,q0,

1. A chooses user sequence number i and sends (S, i) to the challenger
C .

2. C sends (S, i) to the simulator Sim.

3. Sim returns d′i and broadcast header Hdr′ to C , and it replays them
to A .

• In the Store phase,

1. A chooses (D ,W) and sends them to C .

2. C sends |D1|, · · · , |Dn| and |W | to simulator Sim, where D =
{D1, · · · ,Dn}.

3. Sim returns (I ′,C ′) to C , and it replays them to A .

• In the TokenGen phase, for j = 1, · · · ,q1,

1. A chooses keywords wa j ∈W , wb j ∈W , and sends them to C .

2. C sends token j to Sim.

3. Sim returns token′j to C , and it replays it to A .

• In the Search phase, for j = 1, · · · ,q2,

1. A chooses broadcast header Hdr, keywords wa j ∈W and wb j ∈W ,
and sends them to C .

2. C sends List(wa j ∧wb j) = {k|Dk contains both wa j and wb j} to Sim.

3. Sim returns {label′j, pad′j} to C , and it replays it to A .

• In the Modify phase, for j = 1, · · · ,q3,

1. A sends (k,Dk) to C .

2. C sends (k, |Dk|) to Sim.

3. Sim returns C′k to A .

• In the Delete phase, for j = 1, · · · ,q4,

1. A sends k to C .

2. C sends k to Sim.

3. Sim returns C′k(delete) to A .

• In the Add phase, for j = 1, · · · ,q5,

1. A sends Dn+1 to C .

2. C sends |Dn+1| to Sim.

3. Sim returns C′n+1 to A .

- Finally A outputs a bit b.

Figure 3.3: Simulation Game

3.3. THE PROPOSED CONSTRUCTION 34

The label which helps locate index items is designed to be computed from two parts:
the broadcast plaintext K and the trapdoor t. The former is obtained by decrypting the
broadcast ciphertext Hdr, and the latter is related to keywords. As shown in Fig. 3.4,
parameters and keys are delivered to in Setup phase, so is Hdr. Then the owner uploads
documents and index to the server in Store phase. Receiving Hdr, the user decrypts it to
get K, generates t from desired keywords and figures out label in Search phase. However,
once a user obtains K, it needs not to ask permission to search any more. What we expect
is each search is granted in real-time. Therefore, K cannot be obtained directly, and
another round of communication is added. In TokenGen phase, the server processes Hdr

with the received t and returns Hdr. By decrypting Hdr, the user gets label and sends
it with pad (auxiliary information for decrypting the encrypted index item) to the server.
Finally, the server returns target documents C.

Another issue is how to verify searching results. Here verification should be performed
on checking two aspects: if returned documents are modified and if more or fewer doc-
uments are returned, i.e. the index item is tampered. Two accumulators which are used
for checking set members are employed: one is deployed on documents, and the other is
deployed on encrypted index items. Referring to Fig. 3.4, the server returns the verifiable
information π together with C so that the user computes the accumulators and compares
them with A (accumulators received from the owner initially).

To improve multi-keyword query efficiency, we deploy a two-keyword index, i.e. each
index item represents documents containing two keywords so that the user can deal with
two keywords once, increasing not too much storage burden.

Discussion. Though a multi-keyword index using more keywords will bring about
further acceleration than a two-keyword index in a multi-keyword search, it inflates the
number of index items and occupies more storage space at the same time. In addition,
computation cost on the index accumulator for checking the correctness of the index is
also related to the number of index items. Thus, deploying a multi-keyword index not
only increases the storage burden but also further slows down Store, TokenGen and Add
as these three phases contain computations on the index accumulator. To make a trade-
off between efficiency and cost, we utilize the two-keyword index. Moreover, a two-
keyword query is more frequent than any other multi-keyword queries in the real situation.
Therefore, the two-keyword index is more reasonable undoubtedly.

3.3.2 Detailed Construction

Setup.

1. G is a bilinear group of prime order p. There exists a group G1 and an effi-
ciently computable bilinear map e : G×G→ G1. g is a generator of G and α ∈R

Zp is randomly chosen. gi = g(α
i) is computed for i = 1,2, · · · ,b,b+ 2, · · · ,2b.

3.3. THE PROPOSED CONSTRUCTION 35

Figure 3.4: Scheme Model

The scheme consists of seven phases: 1. Setup; 2. Store; 3. TokenGen; 4. Search; 5. Modify; 6.
Delete; 7. Add.

The owner randomly chooses γ ∈R Zp and sets s = gγ . The public key is PK =

(g,g1, · · · ,gb,gb+2, · · · ,g2b,s). U = {1,2, · · · ,b} and the private key for user i ∈U

is di = gγ

i . Suppose the user set is S⊂U . The owner randomly chooses t ∈R Zp and
sets K = e(gb+1,g)t = e(gb,g1)

t , Hdr = (c0,c1) = (gt ,(s ·∏ j∈S gb+1− j)
t).

2. PRF1(k1, ·) is a pseudo-random function: {0,1}|k1|×{0,1}∗→ Zp. PRF2(k2, ·) is
a pseudo-random function: {0,1}|k2|×{0,1}∗→ {0,1}∗. PRF3(k3, ·) is a pseudo-
random function: {0,1}|k3|×Zp → Zp. SKE = {G,E,E−1} is a symmetric-key
encryption scheme, where G is a key generation algorithm, E is an encryption al-
gorithm and E−1 is a decryption algorithm and assume Symmetric-Key Encryption
SKE is CPA-secure. H : {0,1}∗→{0,1}λ is a collision-resistant hash function and
will be used in following phases. The owner randomly chooses three keys k1,k2,k3

for the above three PRFs respectively and one key ke for SKE.

3. The owner selects RSA accumulator parameters as Section 2.5.2. N,v, f ,k0 are
public and P,Q are secret.

4. The owner publishes {PRF0,PRF1,PRF2,PRF3,H, f ,SKE,N,v, f ,k0,G,G1, p,g,

{gi}i=1,··· ,b,b+2,··· ,2b,S,b,s}, sends {k1,k2,ke,di} to each user, sends {k3,Hdr} to
the server, keeps {P,Q,α,γ,σ , t,K} secret.

Store.

1. D(wi∧w j) denotes the set of documents which contain both keyword wi ∈W and
w j ∈W and List(wi∧w j) = {k|Dk contains both wi and w j}. On input (D ,W), the
owner stores (I ,C) to the server, where D = {D1,D2, · · · ,Dn} is a set of docu-
ments and W = {w1,w2, · · · ,wm} is a set of keywords. Let Index = {ei, j,k} be an

3.3. THE PROPOSED CONSTRUCTION 36

m(m+1)
2 ×n binary matrix such that

ei, j,k =

{
1 if wi and w j are both contained in Dk,

0 otherwise.

All keywords are arranged in the lexicographical order. For example, wi = “common”
is placed before w j = “computer” and i< j. There are m rows about one single key-
word which could be considered as wi with w j in which i = j. The original index
Index = {ei, j,k} are computed from wi and w j in which i ≤ j. Thus the num-
ber of rows is C2

m +m = m(m+1)
2 . That is to say the directory will be in this order

w1∧w1,w1∧w2, · · · ,w1∧wm,w2∧w2,w2∧w3, · · · ,wm∧wm.

2. The owner computes Ck = Eke(Dk) for each document Dk ∈D , tokenl = PRF1(k1,

wi||w j) for every two keywords wi and w j, and rl = PRF3(k3, tokenl), where l is the
counter of token corresponding to the counters of keywords i and j. Computes{

labell = Ktokenl ·rl

indexl = indexl⊕ [PRF2(k2,wi||w j)]1···n

for each two keywords wi,w j ∈ W . Here || denotes concatenation. σ is a random
permutation on {1, · · · , m(m+1)

2 }. Then stores C = (C1,C2, · · · ,Cn), I = {labelσ(l),

indexσ(l)} to the server.

3. Acc(·) is used on EC = {(k,Ck)|k = 1, · · · ,n} and EI = {(labell,k, [indexl]k)|l =
1, · · · , m(m+1)

2 ,k = 1, · · · ,n}. The owner computes
AC = v∏

n
k=1 prime(H(k,H(Ck)))mod N

AI = v∏

m(m+1)
2

l=1 ∏
n
k=1 prime(H(labell ,k,[indexl]k))mod N

and sends {AC,AI} to each user.

TokenGen. Suppose that one user wants to search on two keywords wa and wb.

1. The user computes tokenc = PRF1(k1,wa||wb) and sends it to the server.

2. Then the server computes rc =PRF3(k3, tokenc) and Hdr =Hdrrc·tokenc = {crc·tokenc
0 ,

crc·tokenc
1 }, sends Hdr to the user.

Search.

1. The user decrypts Hdr to get labelc = Krc·tokenc and computes padc = [PRF2(k2,

wa||wb)]1···n. Then sends {labelc, padc} to the server.

3.3. THE PROPOSED CONSTRUCTION 37

2. The server access labelc location to get its storing contents, i.e. indexc. It com-
putes (e1, · · · ,en) = padc⊕ indexc and sets C′(wa∧wb) = {(k,Ck)|ek = 1}. Then it
computes πC = v∏ek=0 prime(H(k,H(Ck)))mod N,

πI = v∏l 6=c{∏n
k=1 prime(H(labell ,k,[indexl]k))}mod N.

The server returns (C′(wa∧wb),πC,πI) to the user.

3. The user first computes Xi = prime(H(i,H(Ci))) for each (i,Ci) ∈C′(wa∧wb), and
checks if

AC = (πC)
∏ei=1 Ximod N. (3)

The user then reconstructs (e1, · · · ,en) from C′(wa ∧wb) and computes indexc =

padc⊕ (e1, · · · ,en). Computes z j = prime(H(labelc, j, [indexc] j)) for j = 1, · · · ,n,
and checks if

AI = (πI)
∏

n
j=1 z jmod N. (4)

If both of the checks succeed, the user decrypts all Ci and outputs the documents
{Di|ei = 1}. Otherwise it outputs reject.

Modify. Suppose that the owner wants to modify Ci to Ci.

1. The owner sends (i,Ci) to the server.

2. The server computes πi = v∏k 6=i prime(H(k,H(Ck)))mod
N and returns (H(Ci),πi) to the owner.

3. The owner computes Xi = prime(H(i,H(Ci))) and checks if

AC = (πi)
Ximod N. (5)

If the check fails, then he outputs reject. Otherwise he computes

X i = prime(H(i,H(Ci)))),

d = X i/Ximod (P−1)(Q−1),

AC = (AC)
d = vX1···X i···Xnmod N.

The owner sends AC to each user for updating AC.

Delete. Suppose that the owner wants to delete Ci.

1. It first sends (i) to the server.

2. Then applies Modify to Ci = Eke(delete).

3.4. SECURITY PROOF 38

Add. Suppose that the owner wants to add a document Dn+1. Let

ei, j,n+1 =

{
1 if wi and w j are both contained in Dn+1,

0 otherwise.

1. The owner computes Cn+1 = Eke(Dn+1) and

AC = (AC)
prime(H(n+1,H(Cn+1)))mod N.

Then sends them to each user for updating AC to AC.

2. The owner also computes αl = [PRF2(k2,wi||w j)]n+1⊕ei, j,n+1 for l = 1, · · · , m(m+1)
2 ,

where [PRF2(k2,wi||w j)]n+1 denotes the n+ 1th bit of PRF2(k2,wi||w j). It sends
Cn+1,(ασ(1), · · · ,ασ(

m(m+1)
2)

) to the server.

3. The server updates indexσ(l) to indexσ(l) = indexσ(l)||ασ(l) for l = 1, · · · , m(m+1)
2 .

4. The owner computes zi = prime(H(labell,n+1,αl)) and computes AI =

(AI)
z1···z m(m+1)

2 mod N. It sends it to each user for updating AI to AI and n to n+1.

3.4 Security Proof

We prove the security of our MVSSE scheme under the Universally Composable (UC)-
security framework. We first show that UC-security against non-adaptive adversaries im-
plies privacy and reliability, and then prove that our scheme is UC-secure.

3.4.1 Ideal Functionality

Ideal function is used for describing parties’ all computation. Here we regard all parties
(the owner, the server and the users) as dummy ones who interact with the environment
Z and delegate their computation to the ideal functionality F .

Our ideal functionality F contains all phases and covers security requirements of each
phase. In the setup phase, it leaks Hdr to the ideal adversary S . In store phase, it
leaks |D1|, · · · , |Dn| and |W | to S . In the tokengen phase, it leaks tokenc to S . In the
search phase, it leaks List(wa ∧wb) to S . In the modify phase, it leaks (i, |Di|) to S .
In the delete phase, it leaks i to S . In the add phase, it leaks |Dn+1| to S . Our ideal
functionality is defined in Fig. 3.5.

Definition 32. We say that our protocol is UC-secure if it securely realizes the ideal
functionality F .

3.4. SECURITY PROOF 39

Ideal Functionality F

Running with the dummy owner P1, the dummy server P2, the dummy user P3
and an adversary S .

• Upon receiving (Setup,sid,S) from P1, verify that this is the first input
from P1 with (Setup,sid). If so, choose public parameters, send Hdr to S
and send di to P3. Otherwise ignore this input.

• Upon receiving (Store,sid,D ,W , Index) from P1, verify that this is the
first input from P1 with (Store,sid). If so, store (n,D ,W , Index), and send
|D1|, · · · , |Dn| and |W | to S . Otherwise ignore this input.

• Upon receiving (Tokengen,sid,wa,wb) from P3, send tokenc to S , where
wa ∈W and wb ∈W , and send Hdr to P3.

• Upon receiving (Search,sid,Hdr,wa,wb) from P3, send List(wa ∧wb) to
S , where wa ∈W and wb ∈W .

1. If S returns OK, then send D(wa∧wb) to P3.

2. If S returns reject, then send reject to P3.

• Upon receiving (Modify,sid, i,Di) from P1, send (i, |Di|) to S .

1. If S returns OK, then replace Di with Di.

2. If S returns reject, then send reject to P1.

• Upon receiving (Delete,sid, i) from P1, send i to S.

1. If S returns OK, then let Di := delete.

2. If S returns reject, then send reject to P1.

• Upon receiving (Add,sid,Dn+1) from P1, send |Dn+1| to S , add Dn+1 to
D and update n to n+1.

Figure 3.5: Ideal Functionality

3.4. SECURITY PROOF 40

3.4.2 Equivalence between UC-Security and Security Models

We prove the secure realization of our ideal functionality F in the UC-framework is
equivalent to the definitions of privacy and reliability presented in Section 3.2.2. The
necessity and sufficiency are discussed respectively in the following two theorems.

Theorem 1. An MVSSE scheme satisfies privacy and reliability if the corresponding pro-

tocol ΣMV SSE is UC-secure against non-adaptive adversaries.

Proof. Assume that an MVSSE does not satisfy privacy or reliability. Then we should
show that ΣMV SSE is not UC-secure, i.e. ΣMV SSE does not securely realize FMV SSE .

We construct an environment Z and an adversary A such that for any ideal world
adversary S , Z could tell whether it is interacting with A in ΣMV SSE in the real world
or with S which interacts with FMV SSE in the ideal world.
Case 1. Assume that an MVSSE does not satisfy privacy. That means it does not meet
Definition 30 and for any simulator Sim there exists an adversary B such that Equation
(1) is non-negligible.

Z asks the real world A or the ideal world adversary S to corrupt P2(= server) so that
P2 replays messages which it receives from P1(= owner) or P3(= user) to Z in the real
world, while S simulates corresponding messages and sends them to Z . Z internally
runs B as follows.

If B sends S to the challenger C , then

1. Z activates P1(= owner) with input (Setup,sid,S).

2. In the real world, P1 sends Hdr to P2(= A) and di to P3(= user), and P2 replays
them to Z .

In the ideal world, P1 sends (Setup,sid,S) to FMV SSE . FMV SSE sends Hdr to S (=

P2) and di to P3. S computes Hdr′, and sends them to Z .

3. Z sends Hdr or Hdr′ to B.

If B sends (D ,W) to C , then

1. Z activates P1(= owner) with input (Store,sid,D ,W).

2. In the real world, P1 sends (I ,C) to P2(= A), P2 replays them to Z .

In the ideal world, P1 sends (Store,sid,D ,W) to FMV SSE . FMV SSE sends |D1|, · · · , |Dn|,
m to S (= P2). S computes (I ′,C ′), sends them to Z .

3. Z sends (I ,C) or (I ′,C ′) to B.

If B sends (wi,w j) to C , then

3.4. SECURITY PROOF 41

1. Z activates P3(= user) with input (Tokengen,sid,wi,w j).

2. In the real world, P3 sends token(wi∧w j) to P2(= A), and P2 replays it to Z .

In the ideal world, P3 sends (Tokengen,sid,wi,w j) to FMV SSE . FMV SSE sends
token(wi∧w j) to S (= P2). S computes token(wi∧w j)

′, and sends it to Z .

3. Z sends token(wi∧w j) or token(wi∧w j)
′ to B.

If B sends (wi,w j,Hdr) to C , then

1. Z activates P3(= user) with input (Search,sid,Hdr,wi,w j).

2. In the real world, P3 sends (label, pad) to P2(= A), and P2 replays it to Z .

In the ideal world, P3 sends (Search,sid,Hdr,wi,w j) to FMV SSE . FMV SSE sends
List(wi∧w j) to S (= P2). S computes (label′, pad′) to P2(= A), sends it to Z .

3. Z sends (label, pad) or (label′, pad′) to B.

If B sends (i,Di) to C , then

1. Z activates P1(= owner) with input (Modify,sid, i,Di).

2. In the real world, P1 sends (i,Ci) to P2(= A), and P2 replays them to Z .

In the ideal world, P1 sends (Modify,sid, i,Di) to FMV SSE . FMV SSE sends (i, |Di|)
to S (= P2). S computes (i,C′i), sends them to Z .

3. Z sends (i,Ci) or (i,C′i) to B.

If B sends (i) to C , then

1. Z activates P1(= owner) with input (Delete,sid, i).

2. In the real world, P1 sends Ci = Eke(delete) to P2(= A), and P2 replays it to Z .

In the ideal world, P1 sends (Delete,sid, i) to FMV SSE . FMV SSE sends i to S (=P2).
S computes (i,C′i = Ek′e(delete)), and sends them to Z .

3. Z sends (i,Ci) or (i,C′i) to B.

If B sends Dn+1 to C , then

1. Z activates P1(= owner) with input (Add,sid,Dn+1).

2. In the real world, P1 sends Cn+1 to P2(= A), and P2 replays them to Z .

In the ideal world, P1 sends (Add,sid,Dn+1) to FMV SSE . FMV SSE sends |Dn+1| to
S (= P2). S (= P2) computes C′n+1, and sends them to Z .

3.4. SECURITY PROOF 42

3. Z sends Cn+1 or C′n+1 to B.

Z outputs 1 if and only if B outputs 1.
From the above we could see if Z is interacting with ΣMV SSE in the real world, then

Gamereal is emulated successfully for B. While if Z is interacting with S which interacts
with FMV SSE , then Gamereal is also emulated successfully for B since FMV SSE plays the
role of challenger and S plays the role of Sim.

We have assumed that for any simulator S , there exists an adversary B such that
Equation (1) is non-negligible. Since Z has the same outputs as those of B, the difference
of Z ’s outputs in Gamereal and Gameideal is non-negligible, i.e. very distinct. Therefore,
we could say that Z could distinguish whether it is interacting with A in ΣMV SSE in the
real world or with S which interacts with the ideal functionality FMV SSE in the ideal
world. In other words, ΣMV SSE could not securely realize FMV SSE .
Case 2. Assume that an MVSSE does not satisfy reliability. That means it does not meet
the Definition 31 and for any simulator S there exists an adversary B such that Equation
(2) is non-negligible.

Z asks A or S to corrupt P2(= server) so that P2(= A) replays messages which
he receives from P1(= owner) or P3(= user) to Z in the real world, while S simulates
corresponding messages and sends them to Z . Z internally runs B.

The probability of B winning the game is non-negligible when Z is interacting with
ΣMV SSE because of our assumption. Z has the same outputs as those of B, then Z

outputs 1 with non-negligible probability. While Z will never receive such C(w)∗ which
could pass the validity check from S (= P2), i.e. Z will not output 1 at any time. Thus Z

could distinguish whether it is interacting with ΣMV SSE or with the ideal world adversary
S which interacts with FMV SSE .

Theorem 2. ΣMV SSE is UC-secure against non-adaptive adversaries if an MVSSE scheme

satisfies privacy and reliability.

Proof. Now we assume ΣMV SSE is not UC-secure against non-adaptive adversaries, i.e.
ΣMV SSE could not securely realize FMV SSE , which means there exists an environment Z

which could distinguish whether it is interacting with ΣMV SSE or with the ideal world
adversary S which interacts with FMV SSE . We then show that the MVSSE cannot meet
privacy or reliability. First of all, we assume that the MVSSE satisfies privacy, i.e. there
exists one simulator Sim that meets Definition 30, and we will elicit some conflicts.

Suppose that Z does not let A corrupt any party. Since Z does not interact with P2

and only interacts with P1 or P3, thus P2 does not need to replay messages received from
P1 or P3 to Z . That is to say, no Z could distinguish the real world from the ideal one.

Suppose that Z let A corrupt P1(= owner). That is to say A could replay messages
of P1 to Z . While P2 does not need to replay messages received from P1 or P3 to Z . S

runs A internally by playing the role of P2 and could act as P2 with reality since P2 has no

3.4. SECURITY PROOF 43

interactions with Z and F . Then no Z could distinguish the real world from the ideal
one.

Suppose that Z let A corrupt P3(= user). That is to say A could replay messages of
P3 to Z . While P2 does not need to replay messages received from P1 or P3 to Z . S

runs A internally by playing the role of P2 and could act as P2 with reality since P2 has no
interactions with Z and F . Then no Z could distinguish the real world from the ideal
one.

Suppose that Z let A corrupt P2(= server), but P2 meets reliability and Equation
(2)= 0 in Definition 31 A will replay messages received from P1 or P3 to Z . S behaves
in the same way as Sim mentioned above. Gamereal and Gamesim are successfully emulated
as above. Hence, there is no Z could distinguish the real world from the ideal one.

Suppose that Z let A corrupt P2(= server), but P2 meets reliability and Equation (2)
is negligible in Definition 31. Hence, for the same reason as the above, there is no Z that
could distinguish the real world from the ideal one, too.

Hence Z could only let A corrupt P2(= server), P2 does not meet reliability and
Equation (2) is non-negligible in Definition 31 so that Z could distinguish the real world
from the ideal one. That is to say, the MVSSE does not meet reliability.

3.4.3 UC-Security of Our Scheme

Because of the equivalence between UC-security and the security requirements, namely
privacy and reliability, the UC-security of our scheme implies that our scheme satisfies
privacy and reliability.
Remark. It is worth noting that two schemes are proposed in [61], where the first one is
actually the special case of the second one, which is a general construction. Since the
general construction is proved to be semantic secure in [20], the semantic security of the
special one which is utilized in our scheme is apparently implied.

Theorem 3. The scheme is UC-secure against non-adaptive adversaries under the strong

RSA assumption if Broadcast Encryption is Chosen Plaintext Attack (CPA)-secure, SKE

is CPA-secure, PRF is a pseudo-random function, and H is a collision-resistant hash

function.

The general idea of the proof is that with permitted leakage from the functionality F ,
our protocol can be simulated perfectly without being detected by the environment Z . It
first demonstrates that Z cannot distinguish running our protocol from interacting with
F . Then it shows that the outputs of involved parties in running our protocol are also
indistinguishable from the outputs in interacting with F in the view of Z . The proof is
given as follows.

3.4. SECURITY PROOF 44

Proof. Suppose that the real world adversary A does not corrupt any party. Then it is easy
to see that the user outputs the correct documents for each two search keywords. Further
Z interacts with the owner(= P1) and the user(= P3). Therefore no Z can distinguish
the real world from the ideal world.

Suppose that Z asks A to corrupt the owner(= P1) in our protocol. In this case,
A may report the communication pattern of the owner to Z . Consider an ideal world
adversary S who runs A internally by playing the role of the server(= P2), forwarding
all messages from Z to A and vice versa. Note that S can play the role of the server
faithfully because it has no interaction with Z . This means that no Z can distinguish the
real world from the ideal world.

Suppose that Z asks A to corrupt the user(= P3) in our protocol. In this case, A may
report the communication pattern of the user to Z . Consider an ideal world adversary S

who runs A internally by playing the role of the server(= P2), forwarding all messages
from Z to A and vice versa. Note that S can play the role of the server faithfully
because it has no interaction with Z . This means that no Z can distinguish the real
world from the ideal world.

Suppose that Z asks A to corrupt the server (= P2). In this case, ideal world adver-
sary S runs A internally by playing the role of the owner (= P1) or the user (= P3),
forwarding all messages from Z to A and vice versa.

Setup. Suppose Z sends a Setup command to P1. P1 replays it to F . F then sends
target set S and user number i to simulator S .

1. S runs the owner’s algorithm on input (S, i).

2. By doing so, S sends {PRF0,k0,k3,PRF1, PRF2,PRF3,H, f ,SKE,N,v,G,G1, p,g,

S,b,s, Hdr, {gi|i= 1, · · · ,b,b+2, · · · ,2b}} to A , and keeps sk= {P, Q,k1,k2,ke,σ ,

γ, t,K,{di|i = 1, · · · ,b}} secret.

Store. Suppose Z sends a Store command to P1. P1 replays it to F . F then sends
|D1|, · · · , |Dn| and |W | to S .

1. S runs the owner’s algorithm on input D ′= {D′i = 0|Di||i= 1, · · · ,n}, W ′= {1, · · · ,
m(m+1)

2 } and Index′ = {e′i, j,k} with e′i, j,k = 0 for all (i, j).

2. By doing so, S sends (I ′,C ′) to A , where C ′=(C1, · · · ,Cn) and I ′= {(labelσ(l),

indexσ(l))}.

TokenGen. Suppose Z sends the ith Tokengen command on keywords wa,wb ∈W to P3.
P3 relays it to F . F then sends tokenc to S . S selects token′c ∈R T and sends it to A .
A computes r′c = PRF3(k3, token′c) and Hdr

′
= Hdrr′c·token′c , then returns Hdr

′.
Search. Suppose Z sends the ith Search command on Hdr and keywords wa,wb ∈W

to P3. P3 relays it to F . F sends List(wa∧wb) = { j|D j contains both wa and wb} to S .

3.4. SECURITY PROOF 45

1. Let

ek =

{
1 if k ∈ List(wa∧wb),

0 otherwise.

S computes r′c = PRF3(k3, token′c), label′
σ(l) = Kr′c·token′c to get corresponding

index
′
σ(l). Then computes pad′= index

′
σ(l)⊕(e1, · · · ,en) and sends (label′

σ(l), pad′)

to A .

2. A returns (C′(wa∧wb),πC,πI).

3. S runs the user’s algorithm on input (C′(wa∧wb,πC,πI) and sk. If the algorithm
outputs reject, then S sends reject to F . Otherwise S sends OK to F .

Modify. Suppose Z sends ith Modify command (i,Di) to P1. Then S is given (i, |Di|)
by F .

1. S first computes C′i = Eke(0
|Di|).

2. Then S runs our protocol Modify with A by playing the role of the owner.

3. If the owner outputs reject, then S sends reject to F . Otherwise S sends OK
to F .

Delete. Suppose Z sends ith Delete command i to P1. Then S is given i by F . S

first computes C′i = Eke(0
|delete|). S then runs our protocol Delete with A by playing the

role of the owner. If the owner outputs reject, then S sends reject to F . Otherwise
S sends OK to F .

Add. Suppose Z sends ith Add command Dn+1 to P1. Then S is given |Dn+1| by F .
S first computes C′n+1 = Eke(0

|Dn+1|). S then runs our protocol Add with A by playing
the role of the owner.

We know that the broadcast encryption is CPA-secure. Suppose that if it is not CPA-
secure then the simulated Hdr may be easily distinguishable from the real one in the Setup

phase by Z . Thus the CPA-secure broadcast encryption will not help Z distinguish.
SKE is CPA-secure, each Eke(D) and Eke(0

|D|) are indistinguishable in the Store phase,
in the Search phase, in the Modify phase, in the Delete phase and in the Add phase. That
means C′ is indistinguishable from the real one C.

Further since PRFs are pseudo-random functions:

• the real I and the simulated one I ′ are indistinguishable.

• in the TokenGen phase, the real tokenc and the simulated one token′c are indistin-
guishable.

• in the Search phase, the real pad and the simulated pad′ are indistinguishable.

3.4. SECURITY PROOF 46

• in the Add phase, the real (α1, · · · ,α m(m+1)
2

) and the simulated one are indistinguish-
able.

Therefore the inputs to A inside S in the ideal world (simulation) are indistinguishable
from those in the real world, i.e., inside S , A behaves in the same way as in the real
world.

On the other side, we will show the outputs of the owner or the user (which Z receives)
in the real world are indistinguishable from those in the ideal world from the view of Z .
A inside of S behaves in the same way as in the real world.

For a modify query (i,Di),

1. the owner sends (i,Ci) to the server, and

2. the server returns (H(Ci),πi) to the owner.

First of all we suppose that A returns (H(Ci),πi) correctly.

• In the real world, the owner updates AC correctly, and outputs nothing.

• In the ideal world, S returns OK to F , and F replaces Di with Di.

Next suppose that A returns an invalid (H(Ci),πi). Then Equation (5) does not hold
with overwhelming probability from the above Proposition 1. Hence

• In the real world, the owner outputs reject, and Z receives reject.

• In the ideal world, S returns reject to F , F sends it to P1, and P1 relays it to Z .

Therefore in the ideal world, Z has the same output as that of the real world. That is
to say, from this point, the real world and the ideal world are indistinguishable.

For a delete query, the real world and the ideal world are indistinguishable in a similar
way.

For an add query D, the owner receives nothing from the server(=A). Thus he always
updates AC and AI correctly and outputs nothing.

Now we will consider the last point that for a search query on keywords wa and wb,

1. the user sends (label, pad) to the server, and

2. the server returns (C(wa∧wb)
′,πC,πI) to the user, where C(wa∧wb)

′ = {(i,Ci)|Di

contains both wa and wb}.

First suppose that A returns (C(wa∧wb)
′,πC,πI) correctly.

• In the real world, the user returns D(wa ∧wb) = {Di|Di contains both wa and wb}
correctly.

3.5. EXTENSIONS 47

• In the ideal world, S returns OK to F , and F sends D(wa∧wb) to P1.

Next suppose that A returns an invalid (C(wa∧wb)
′′,π ′C,π

′
I) such that (C(wa∧wb)

′′,π ′C,

π ′I) 6= (C(wa∧wb)
′,πC,πI).

We will show that Equation (4) or Equation (3) does not hold with overwhelming prob-
ability.
Case 1. C(wa∧wb)

′′ = C(wa∧wb)
′ and (π ′C,π

′
I) 6= (πC,πI). The user computes z j and Xi

correctly, hence Equation (4) or Equation (3) does not hold because (π ′C,π
′
I) 6= (πC,πI).

Case 2. C(wa ∧wb)
′′ 6= C(wa ∧wb)

′. If the user does not compute z j correctly, then
Equation (4) does not hold from Proposition 1.

Suppose the user computes z j correctly. Then he reconstructs (e1, · · · ,en) and indexc

correctly. That is, there exist some (i,C′i)∈ C(wa∧wb)
′′ and (i,Ci)∈ C(wa∧wb)

′ such that
C′i 6=Ci since C(wa∧wb)

′′ 6= C(wa∧wb)
′. For such i, H(i,H(C′i)) 6= H(i,H(Ci)) since H

is a collision-resistant hash function. Thus Equation (3) does not hold from Proposition 1
since prime(H(i,H(C′i))) 6= prime(H(i,H(Ci))).

In the real world, the user outputs reject and Z receives reject. In the ideal world,
S returns reject to F , F sends it to P1 and P1 replays it to Z . As we expect, Z cannot
distinguish the real world from the ideal one.

3.5 Extensions

3.5.1 Boolean Queries

In order to handle boolean queries, such as w1∧(w2∨w3), a single keyword index scheme
works as follows: the user first executes three queries on each keyword, then performs a
disjunctive operation to get w2∨w3 and a conjunctive operation to get the final result sets
on the client side.

To deal with boolean expressions using our two-keyword index, we can re-write every
boolean expression as a Disjunctive Normal Formulation (DNF) whose inner cell expres-
sions are conjunctive expressions. Therefore, for a boolean expression query w1∧ (w2∨
w3), we can perform two searches on w1∧w2 and w1∧w3 respectively on the server side
and then executes disjunctive operation once on the two returning document sets on the
client side. In this example, compared with a single keyword index, we can save one
searching query on the server side and one conjunctive operation on the client side, and
such saving may vary in different boolean expressions.

3.6. PERFORMANCE EVALUATION 48

3.5.2 Adding or Revoking Users

Suppose that the data owner wants to change the target user list for sharing data, including
delegating the searching authority to some new users and revoking some users’ authority.
This could be resolved by adding two phases to our scheme.

AddUser. Suppose that the owner would like to add a new user into the target user list
S.

1. Its sequence number i should satisfy i ∈U and i /∈ S as long as the total number of
users does not exceed b yet. The data owner first distributes the private key di = gi

γ

to user i.

2. Then the new Hdr should be computed as follows:

Hdr = (c0,c′1) = (c0,c1 ·gt
b+1−i).

The owner sends it to the server for updating.

RevokeUser. Suppose that the owner desires to revoke the searching authority of user
i ∈ S.

The owner computes the new Hdr = (c0,c′1) = (c0,c1/gt
b+1−i) and sends it to the server

for updating.
These two phases only contain the interactions among the owner, the server and the

current user. Therefore, other existing users in the target user set will not be influenced at
all.

3.6 Performance Evaluation

3.6.1 Experimental Analysis

In this section, we present the experiment results of our scheme implemented in C++. Our
experiments are conducted on a PC with Intel Core i7-4770 CPU (8-core 3.4GHz) and
16GB RAM running 64-bit Windows 7 Enterprise. The system performance is evaluated
on NIPS full papers containing 1500 files and Enron Emails containing 39861 filesa.

Fig. 3.6(a) illustrates the time cost of Setup phase. As this phase only consists of gen-
erating system parameters and multi-user keys, the time cost is linear to the (maximum)
number of system users. When there are fewer than 100 system users, the time cost is less
than 1 second. When there are 10000 users (close to large scale applications), it is less
than 78 seconds which is still acceptable since Setup is a one-time process.

Fig. 3.6(b) shows the time cost of Store phase, i.e. constructing the index. For the NIPS
dataset, we measure the time of building the index for 20%, 40%, 60%, 80% and 100%

ahttps://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/

3.6. PERFORMANCE EVALUATION 49

(a) Setup (b) Store (c) Search (user)

(d) Search (server) (e) Verify

Figure 3.6: Experimental Results

of the documents in the dataset, respectively. Though Store phase costs more time than
other phases, it is a one-time process done by the user before uploading documents onto
the server.

The time cost in Store phase exhibits quadratic growth with respect to the number of
keywords when fixing the number of documents. When the number of documents is 1500,
and the number of keywords is 50, it costs about 68.0954 seconds.

In the TokenGen phase, the computation that a user undertakes costs about 1 millisec-
ond and the counterpart that the server undertakes costs roughly 6 milliseconds. They are
both independent of the number of documents and keywords.

We divide our Search phase into three steps to measure its time consumption: search
on the user side, search on the server side and verification on the user side.

Fig. 3.6(c) illustrates the time cost of Search on the user side. It only depends on
the number of users. When there are fewer than 100 system users, it costs less than
13 milliseconds. When there are 10000 users, it is less than 0.14 second which is still
undetectable for users.

It takes less than 3 seconds for the NIPS dataset (1500 files) and 50 keywords.
Fig. 3.6(e) shows the time cost of verification in Search phase on the user side. The

verification process consists of verifying the two accumulators and costs less than 50
milliseconds for the NIPS dataset (1500 files).

As the time cost of Search phase on the server side and the verification in Search phase
on the user side are closely related to the scale of the system, say, the number of keywords
and documents, we further measure the efficiency of the above two processes for the
Enron Emails dataset and 100 keywords in Table 3.1.

3.6. PERFORMANCE EVALUATION 50

Table 3.1: Search and Verify

of docs πC
computation

πI
computation

search (server) verify (user)

5000 0.4968 3.5692 4.073 0.1602
10000 1.1142 3.559 4.6872 0.3222
20000 2.3674 3.578 5.973 0.6522
39861 4.8204 3.5652 8.4406 1.2558

1 All durations are measured in seconds and for 100 keywords.
2 # of docs denotes the number of documents. πC computation and πI computation respectively denote

the time spent on scanning index items, computing πC and computing πI in Search phase on the server
side, whose time cost is denoted by search (server). verify (user) denotes the time cost of the verification
process in Search phase on the user side.

Due to the certain feature of the accumulator, i.e. the witness is generated by gathering
information of all remaining members one by one when the number of documents is
huge, computing πC contributes to most of the time of Search on the server side, which is
approximately proportional to the number of documents. Fortunately, the time spent on
computing πC increases slowly and is round 4.8204 seconds for 39861 documents. The
time spent on computing πI is nearly constant and less than 3.6 seconds for 100 keywords.

Though the time cost of the verification process of Search phase on the user side is
linear to the number of documents because of the computation of accumulators, it grows
slowly and is 1.2558 seconds for 39861 documents.

3.6.2 Comparison with Existing Schemes

Table 3.2 compares some existing SSE schemes with ours.
Most schemes perform only 1 communication round while our scheme needs 2 com-

munication rounds since we embed the broadcast encryption into our scheme to realize
the multi-user setting. As our tokens consist of a PRF value and a pair of (label, index),
our trapdoor computation has the optimal performance O(1) in comparison with r PRF
values in [7], log(n|∆|) PRF values in [21] and l keyed hash values in [78]. Our index
is a matrix of m(m+1)

2 rows, hence its index computation complexity is O(m2). The in-
dexes of [5, 16] consist of both a look-up table of m entries and an array of ∑w∈W R(w)

items. [9] builds an index item for every document regardless whether the document con-
tains the keyword when processing each keyword, so its index computation complexity
is O(mn). [21] uses a binary tree as its index whose nodes correspond to such entries
(w, id,add/del,cnt) recording addition or deletion operations. w induces at least R(w)

such entries so the number of total entries is more than the number of documnet-keyword
pairs, i.e. O(n|∆|). [78] uses an |ε|-ary tree as the index to store the set of words, each
character of any existing word can be found in a node of the tree and every existing word
corresponds to a branch. Thus its index computation complexity is less than the max size

3.7. CHAPTER SUMMARY 51

of the tree |ε|
l+1−1
|ε|−1 , i.e. O(|ε|l). Hence, our index computation complexity is smaller than

that of [5, 9, 16, 78] since m is usually much smaller than n. In [13] and our scheme, given
a token, the server directly finds the row corresponding to the query keywords, therefore
our search complexity is O(1), better than that of [5, 9, 16] which traverse index items
of all n documents or at least R(w) documents containing the keyword w. The proto-
col in [21] finds all tuples (l,w, id,add) in all l ∈ {0,1, · · · ,blog(n|∆|)c} level, such that
the corresponding deletion tuple (l,w, id,del) does not appear in levels l′ ≤ l. Its search
complexity reaches O(R(w)log3(n|∆|)) by means of its SkipHole algorithm even in the
worst case. [78] stores all sequence numbers of documents containing word w in its leaf
node so that its search complexity is also O(1). Our scheme uses two RSA accumulators
to check the validity of the returning documents, and the computation complexity is O(n)

for verifying AI and O(R(w)) for verifying AC, which is relatively more expensive than
n MACs in [9], n MACs including R(w) MACs verifying addition entries and at most
n−R(w) MACs verifying deletion entries at the edge of each deletion region in [21], and
l +1 verifications including block cipher decryption or keyed hash operations in [78].

Overall, our scheme has a comparable performance with the existing SSE schemes
while realizing multi-user searching and some other desirable features such as verifiability
and supporting dynamic operations.

3.7 Chapter Summary

In this chapter, we introduced the notion of multi-user verifiable searchable symmetric
encryption (MVSSE), which is more practical than single-user SSE in cloud storage sys-
tems. We presented the security definitions, i.e. privacy and reliability for MVSSE, and
an efficient construction. We also introduced a Universally Composable (UC-) security
framework for proving the security of MVSSE and proved that our proposed scheme is
UC-secure. Several extensions of the proposed scheme illustrate that the scheme could
achieve better performance on conjunctive and boolean queries for both server and client.

3.7. CHAPTER SUMMARY 52

Ta
bl

e
3.

2:
Pe

rf
or

m
an

ce
C

om
pa

ri
so

n

#
of

ro
un

ds
tr

ap
do

or
co

m
pu

ta
tio

n
in

de
x

co
m

pu
ta

tio
n

se
ar

ch
m

ul
ti-

us
er

hi
de

se
ar

ch
pa

tte
rn

ad
ap

tiv
e

ad
ve

rs
ar

y
ve

ri
fia

bi
lit

y
ve

ri
fia

ca
tio

n
co

st
up

da
te

[1
]

1
O
(1
)

–
O
(n

L)
7

3
–

7
–

7

[7
]

1
O
(r
)

O
(n
|∆
|)

O
(n
)

7
3

3
7

–
7

SS
E

-1
[1

6]
1

O
(1
)

O
(n
|∆
|)

O
(n
)

7
3

7
7

–
3

SS
E

-2
[1

6]
2

O
(1
)

O
(m

)
+

O
(n
|∆
|)

O
(n
)

7
3

7
7

–
3

SS
E

-1
[5

]
1

O
(1
)

O
(m

)
+

O
(n
|∆
|)

O
(R

(w
))

7
3

7
7

–
7

SS
E

-2
[5

]
1

O
(n
)

O
(n
|∆
|)

O
(R

(w
))

7
3

3
7

–
7

[9
]

1
O
(n
)

O
(m

n)
O
(R

(w
))

7
3

7
3

O
(n
)

7

[1
3]

1
O
(1
)

O
(m

)
O
(1
)

7
3

7
3

O
(R

(w
))
+

O
(n
)

3

[2
1]

1
O
(l

og
(n
|∆
|))

O
(n
|∆
|)

O
(R

(w
)l

og
3 (

n|
∆
|))

7
7

–
3

O
(n
)

3

[7
8]

1
O
(l
)

O
(|ε
|l)

O
(1
)

7
7

–
3

O
(l
)

7

ou
rs

2
O
(1
)

O
(m

2)
O
(1
)

3
3

7
3

O
(R

(w
))
+

O
(n
)

3

1
m

is
th

e
nu

m
be

ro
fa

ll
ke

yw
or

ds
,R

(w
)

is
th

e
nu

m
be

ro
fd

oc
um

en
ts

co
nt

ai
ni

ng
th

e
ke

yw
or

d
w

,n
is

th
e

nu
m

be
ro

fs
to

re
d

do
cu

m
en

ts
,|

∆
|i

s
th

e
nu

m
be

r
of

di
st

in
ct

ke
yw

or
ds

pe
rd

oc
um

en
t,

r
is

th
e

B
lo

om
Fi

lte
rp

ar
am

et
er

of
th

e
sc

he
m

e,
li

s
th

e
w

or
d

le
ng

th
of

th
e

ke
yw

or
d

in
cu

rr
en

ts
ea

rc
h,
|ε
|i

s
th

e
si

ze
of

al
ph

ab
et

ic
se

tw
ho

se
ch

ar
ac

te
rs

ar
e

or
de

rl
y

or
ga

ni
ze

d
to

co
ns

tr
uc

te
ac

h
w

or
d,

L
is

th
e

av
er

ag
e

le
ng

th
of

on
e

do
cu

m
en

t.

Chapter 4

Message-Locked Searchable Encryption
for Secure Cloud Storage

This chapter investigates both token-driven primitives Message-Locked Encryption and
Searchable Encryption and finds that trivially combining one primitive with the other
will bring about inefficiencies and risks. Thus, we carefully formalize a primitive called
Message-Locked Searchable Encryption (MLSE) and its security models. Then a concrete
construction is presented and proved semantic secure in Random Oracle Model using the
game-based methodology. The performance evaluation is also provided. Parts of this
work appeared in [79].

4.1 Introduction

With the emergence of cloud storage service, managing business/personal data via a cloud
storage provider such as Dropbox, OneDrive, and Google Drive has become a common
option. Affordable expense, high capacity, and more convenient service, including data
storage, access, and modification via the cloud anytime and anywhere, make cloud storage
a more appealing alternative over the conventional storage model. The statistics portal
website statista [80] forecasts that the number of personal cloud storage consumers will
reach an estimated 2.3 billion worldwide by 2020. However, users’ sundry uploads may
overwhelm cloud service providers for the redundancy, or duplicated documents will be
amplified by the huge scale of the number of users.

Suppose that an international corporation deploys an enterprise-scale cloud architecture
for sharing and storing corporate documents or operational data, then a large number of
duplicated documents could exist in the storage. For instance, the leaders of the corpora-
tion release a document of regulation, all employees will download, learn and then store
it under their own accounts. The trivial strategy is each file is stored once per account,
resulting in a huge waste of storage resource. Message-locked encryption was hence pro-

53

4.1. INTRODUCTION 54

posed [63] to reduce redundancy, where the encryption key is derived from the message,
so the same message leads to the same key and ciphertext.

MLE may face data privacy threats from various attackers, including the cloud server
and clients. Since anyone can generate the key given a plaintext, brute-force attacks are
possible for short plaintexts [63, 81] and should be prevented.

Compared with target-based deduplication, source-based deduplication needs a client
not to re-upload a document but merely a tag if there is already a duplicated one in stor-
age, thereby advantageous in communication cost. However, source-based deduplication
is subject to owner impersonating attacks where a validate tag is forged based on eaves-
dropped partial information. Such attacks spawned the notion of Proof of Ownership
(PoW) [65] where the client needs to prove to the server the possession of the whole file.

Another issue worth noticing is that existing MLE schemes [82–84] rarely provide suf-
ficient functionalities for user demands in real cloud applications, e.g., supporting search.
In addition, MLE by default does not provide any protection on data integrity and data
stored on the cloud server may be damaged due to accidents or malicious attacks. It is
desirable to have an MLE scheme that can support data integrity check, e.g. Proof of
Storage (PoS) [85].

4.1.1 Weakness of Simple Combination of Existing Techniques

To construct a system with all mentioned merits, a trivial solution is to simply combine all
existing techniques. However, this simple combination of MLE, Searchable Encryption
(SE), PoW and PoS will lead to the following problems.
Linear Growth of Storage, Computational and Communication Burden. Both keyword
search and message-locked encryption are dependent on tags to enable search and dedu-
plication. A simple assembly of the two techniques to obtain a versatile system means
generating these two kinds of tags, respectively, which undoubtedly doubles the storage,
the computational and the communication burden for tags.
Difficulties in Collaborative Work on Multiple Modules. If cloud service providers choose
one of these schemes as the core technique of the cloud system, additional independent
modules must be deployed simultaneously in order to obtain functionalities unrealized
by the scheme. Then besides the significant increase in the storage, computation and
communication cost, extra adjustment is needed for letting all modules collaborate as
a whole. All interfaces and parameters should be correctly docked, and all parameters
should be well adjusted.
Security Risks. When discussing the privacy of SE, a leakage function is to be defined to
formulate the permitted leakage and claim the privacy under this leakage. For instance, the
number of documents is an inevitable leakage in the building index phase. However, if SE
and MLE are directly assembled together, the leakage function must further cover MLE

4.1. INTRODUCTION 55

relevant communication transcripts in leakage, implying more information is leaked than
SE itself. Moreover, such a combination of separate modules will suffer more security
risks regarding more interfaces and more interactions between modules. To supply an
appropriate security analysis for the combination, not only the security of each component
scheme needs to be considered, but also the integral security as a joint system needs
validation. That is also why norms like UC-security were proposed.

4.1.2 Related Work

Message-locked encryption (MLE) is a kind of symmetric encryption where messages are
encrypted under message-derived keys rather than under permanent secret keys. Bellare
et al. formalized the definition and security notions, i.e., privacy and tag consistency of
MLE in [63], then assessed several concrete schemes from these two security considera-
tions. It is worth noting that their privacy also depends on the assumption of unpredictable
messages. Following researches [81, 82, 86] are still based on this assumption. Prior to
presenting their schemes, Abadi et al. further considered security requirements for mes-
sages whose distribution is dependent on public parameters, namely lock-dependent mes-
sages [86]. They adopted computationally expensive Non-Interactive Zero-Knowledge
(NIZK) proof and secret sharing mechanism to obtain a fully random scheme satisfying
their security requirements in the random oracle model and gave a deterministic scheme
where the security of lock-dependent messages holds under computational assumptions
on the message distributions. Bellare et al. strengthened the security for messages that
are not only dependent on the public parameters but correlated as well [82] and presented
interactive Message-Locked Encryption (iMLE) protocols meeting their security defini-
tions in the standard model. In addition, their construction supports incremental updates.
In order to prohibit brute-force attacks recovering known files, an architecture [81] con-
sists of a key server in addition to the storage server was proposed together with a system
DupLESS which achieves prominent privacy with the help of the key server.

Besides schemes concentrated on file-level deduplication mentioned above, numerous
schemes [83, 84, 87] focus on block-level deduplication or dual-level (both file-level and
block-level) deduplication successively appear in this research field. Li et al. designed a
dual-level deduplication construction on the base of CE, which supports efficient key man-
agement [87]. Chen et al. extended file-level deduplication to block-level deduplication
[83], formalizing the definition of Block-Level Message-Locked Encryption (BL-MLE)
and presenting a dual-level source-based deduplication scheme which is more space sav-
ing than only file-level deduplication. However, all the mentioned MLE schemes do not
consider implementing search functionality simultaneously. That means to enable search
on a deduplication system, keyword search technique needs to be embedded as a separate
module, proportionally increasing the use of computational and storage resource.

4.1. INTRODUCTION 56

Figure 4.1: MLSE

KeyGen, Upload and Search respectively respresent algorithms for deriving keys, storing docu-
ments and performing search on storage.

When discussing source-based deduplication, PoW [65] is indispensable, which is an
interactive protocol between server and client and helps the client convince the server
that it owns a file. Merkle Hash Tree [88] is widely used to implement PoW in MLE.
Alternative implementations [66, 89, 90] of PoW were proposed successively.

Proof of Storage (PoS) [85] was proposed in 2007 to detect data damage due to acci-
dents or attacks. Server responds to a challenge from client based on stored data. Studies
on PoS [91–93] emerge endlessly.

4.1.3 Our Contribution

As mentioned before, if both the keyword search and the message-locked encryption func-
tionalities can share the same tag, or the two tag generation processes can be merged, the
storage, computational and communication burden will be significantly reduced. In ad-
dition, a unified scheme would be a better choice for cloud service suppliers instead of
assembling all techniques directly and significantly simplifies their cloud application ar-
chitecture. Besides, the security of separate schemes does not imply the security of the
entire system. Therefore, we aim to find a solution combining the two functionalities
while achieving better efficiency, deployability and security than the trivial solution.

In this chapter, we propose a generic dual-server Message-Locked Searchable Encryp-
tion (MLSE) scheme (Fig. 4.1). Compared with existing MLE schemes, our scheme
acquires the merit of resisting brute-force attacks by requiring a key server to be involved
in the key generation, i.e., adopting a dual-server (the key server and the storage server)
model. In addition, our scheme enables efficient search on encrypted data that may be
simultaneously possessed by multiple owners and only permits owners to access their
own data. Our scheme also realizes PoW mechanism to help detect clients’ cheating be-
haviours. Moreover, our scheme can be extended to support an efficient PoS mechanism.

4.2. FORMAL DEFINITION AND SECURITY MODEL 57

The contributions of our work are four-fold:

• We present a framework for constructing an MLE scheme supporting keyword
search, i.e., MLSE, formulate the definition and the security requirements of MLSE,
then propose a generic MLSE construction.

• The deduplication in our scheme is due to two types of tags, in which the search tag
not only accelerates locating the target duplicated document in the upload protocol
but also makes both multi-keyword search and negative keyword search possible in
the search protocol.

• Compared with the previous constructions, our scheme simplifies the PoW imple-
mentation by performing a hash computation to achieve PoW.

• Our scheme is versatile and can be extended to support an efficient PoS mechanism
for data integrity check.

4.1.4 Chapter Organization

The syntax, workflows, correctness and security definitions are shown in Section 4.2.
Then the proposed scheme is depicted in Section 4.3 followed by the security analysis in
Section 4.4. After a PoS extension on our scheme in Section 4.5, our scheme performance
is evaluated. Finally we review this chapter in Section 4.5.

4.2 Formal Definition and Security Model

Similar to but different from regular MLE, besides deduplication, MLSE supports further
functionality of search. In this section, we first outline the syntax of MLSE, then illustrate
the workflow of system protocols based on the given syntax. Correctness and security
definitions are given after that. To be noted, though MLSE is designed on the basis of
MLE and SSE, its security definition cannot be split into two parts for MLE and SSE
respectively and must be considered for the whole MLSE. In short, MLSE is to MLE and
SSE, what signcryption is to encryption and signature. Thus, new security definitions for
MLSE should be given rather than using those for MLE and SSE directly.

4.2.1 Formal Definition

A Message-Locked Searchable Encryption (MLSE) is defined as follows:
Setup(1λ)→ (params,skKS,{skclient}): given the security parameter λ , it outputs the

public parameter paramsa including a keyword set W , the key server’s secret key skKS

and each client’s secret key skclient .

4.2. FORMAL DEFINITION AND SECURITY MODEL 58

Algorithm 1 SystemBuild

Input: KS chooses the security parameter λ .
Output: KS keeps skKS, SS and all clients obtain the public parameters pp and each

client obtains its secret key skclient respectively.

1: KS does:

• run Setup(1λ)→ (params,skKS,{skclient}).

• share params among SS and all clients.

• distribute each skclient to each client.

2: return

KeyGen(M,skKS,skclient)→ ({kwi},{swi},K): given a document M, the key server’s
secret key skKS and the current client’s secret key skclient , it outputs keyword keys {kwi},
search keys {swi} and the message-locked key K.

1. W−KeyGen(wi, f lag(wi,M),skKS,skclient)→ (kwi,swi): given a keyword wi ∈W ,
f lag(wi,M) which is derived from wi and M, the key server’s secret key skKS and
the current client’s secret key skclient , it outputs the keyword key kwi and the search
key swi corresponding to wi.a

2. M−KeyGen({kwi})→ K: given all keyword keys {kwi}, it outputs the message-
locked key K.

Enc(M,K,skclient)→C: given a document M, a message-locked key K and an owner
client’s secret key skclient , it outputs the the ciphertext C = (C1,C2) where C1 is unique for
each owner, C2 is identical and can be independently reconstructed by any other owner in
possession of M.

Dec(C,skclient)→M/⊥: given the ciphertext C = (C1,C2) and the owner client’s secret
key skclient , it outputs the underlying document M or ⊥.

TagGen({swi},C)→ ({Ppubwi
}, t): given search keys {swi} and the ciphertext C, it out-

puts the search tag set {Ppubwi
} and the ciphertext tag t.

1. W−TagGen(swi)→ Ppubwi
: given a search key swi , it outputs the corresponding

search tag Ppubwi
.

2. C−TagGen(C)→ t: given C = (C1,C2), it outputs the ciphertext tag t.

ConTest(C, t)→ 0/1: given the ciphertext C and the ciphertext tag t, it outputs 0/1.
PoWChallenge()→Q: it outputs a challenge Q.

aFrom the inputs skKS,skclient , it is easy to learn that this is an interactive algorithm ran between the key
server and the client rather than one ran by any single party.

4.2. FORMAL DEFINITION AND SECURITY MODEL 59

PoWProve(Q,C,{Ppubwi
})→P: given a challenge Q, the ciphertext C, the search tag

set {Ppubwi
}, it outputs the proof P .

PoWVerify(Q,{Ppubwi
},C,P)→ 0/1: given the challenge Q, the search tag set {Ppubwi

},
the ciphertext C and the proof P , it outputs 0/1.

Figure 4.2: Input, Output and Information Exchange in Three Scenarios Regarding Syn-
tax of MLSE

Here, we omit SystemBuild. In the first scenario on the left, after running KeyGen with Key
Server (KS), Enc and TagGen itself, Client 1 sends tags including an aggregated search tag and
a ciphertext tag to Storage Server (SS). Since there exists no such document, SS requests the
document (together with search tags) and stores both the ciphertext and the ciphertext tag. If
the ciphertext tag to be stored is generated by Client 1 rather than SS, SS also runs ConTest to
guarantee tag consistency. In the second scenario in the center, after KeyGen and sending tags,
SS finds there already exists such a document, then runs PoW with Client 2 in order to decide
whether Client 2 is the owner. In the third scenario on the right, after KeyGen, Client 3 sends
search tags of interest and retrieves corresponding documents from SS.

4.2.2 Workflow

Our construction involves interactions among multiple parties who play three different
roles, i.e. a key server, a storage server and multiple clients. Here we denote the Key
Server KS and the Storage Server SS for short. A quick glance is given in Fig. 4.2, which
illustrates how our system works based on the syntax in the following scenarios: storing
a document for the first time, storing a document that exists in SS (deduplication) and
searching documents of interest.

We divide our system into three interactive processes: SystemBuild, Upload and Search.
Algorithm 1, 2 and 3 describe these interacting procedures which realize functionalities
of building system, uploading and searching documents respectively. The storage records
are organized as Fig. 4.3. Algorithm 2 is complex and could be divided into three cases
which are depicted in Fig. 4.4, 4.5 and 4.6.

4.2. FORMAL DEFINITION AND SECURITY MODEL 60

Algorithm 2 Upload
Input: A client client owns a document M and skclient .
Output: The ciphertext of M is stored on SS and client is one of its owners, or SS rejects

the upload request.

1: client does:

• run KeyGen(M,skKS,skclient)→ ({kwi},{swi}, K) with KS, Enc(M,K,skclient)→
C, TagGen({swi},C)→ ({Ppubwi

}, t),

• aggregate all swi ∈ {swi} to get sW ,M,

• run W−TagGen(sW ,M)→ PpubW ,M ,

• send (PpubW ,M , t) to SS.

2: SS scans each tag T = {Ppubagg, {Ppubwi
}}where Ppubagg is the aggregation of {Ppubwi

}.

3: if there is no tag T s.t. Ppubagg ≡ PpubW ,M then
4: (Fig. 4.4) SS does:

• ask client to upload tag set {Ppubwi
} and ciphertext C = (C1,client ,C2),

• aggregate all Ppubwi
∈ {Ppubwi

} to get Ppubagg ,

• open a new storage under T = {Ppubagg , {Ppubwi
}}.

• run C−TagGen(C)→ t,

• store item = {t,C2,(client,C1,client)} under T .

5: else
6: scans all items item under T .
7: if there is no item s.t. titem ≡ t then
8: (Fig. 4.5) SS does:

• ask client to upload ciphertext C = (C1,client ,C2),

• run C−TagGen(C)→ t.

• store item = {t,C2,(client,C1,client)} under T .

9: else
10: (Fig. 4.6) SS does:

• run PoWChallenge()→Q,

4.2. FORMAL DEFINITION AND SECURITY MODEL 61

• send Q to client

11: client does:

• run PoWProve(Q,C,{Ppubwi
})→P ,

• send P to SS.

12: SS runs PoWVerify(Q,{Ppubwi
},C2,P)→ pow.

13: if pow≡ 1 then
14: append item with (client,C1,client).
15: else
16: reject the upload request.
17: end if
18: end if
19: end if
20: return

Remark. Since the ciphertext tag t is computed by the storage server when the cipher-
text C is uploaded for the first time, the stored t is always consistent with the stored
C. As mentioned in Thus ConTest(C, t)→ 1 is explicit in our scheme. For the sake
of integrity, we still include it in the syntax of our scheme.

Figure 4.3: Records in Storage Server

The storage server keeps two types of content: the tag T and the record item. Ti is the ith tag
which contains PpubTi ,agg and a set of search tags {PpubTi,w j

}. The former one is generated by the
storage server when the set of search tags {PpubTi,w j

} is uploaded for the first time, aggregating
members of the set. itemTi,k represents the kth record under Ti. A item corresponds to a document,
which consists of a ciphertext tag t, a part of ciphertext C2 and several client-ciphertext pairs
(client,C1,client). t is computed from C2 when it is uploaded for the first time. C2 is uploaded by
its first owner client. Each (client,C1,client) is uploaded by the document’s each owner.

4.2. FORMAL DEFINITION AND SECURITY MODEL 62

Algorithm 3 Search

Input: A client client chooses keywords W ′ = {wi} ⊂W .
Output: client obtains documents with or without keywords W ′= {wi}⊂W of its own.

1: client runs KeyGen(M,skKS,skclient)→ ({kwi}, {swi},K) with KS.
2: runs W−TagGen(swi)→ Ppubwi

for wi ∈W ′.
3: sends {Ppubwi

|wi ∈W ′} to SS.
4: SS initializes the returning result = /0.
5: reads the first tag set {Ppubwi

}.
6: repeat
7: if {Ppubwi

} ⊃ {Ppubwi
|wi ∈W ′} then

8: reads the first item under {Ppubwi
}.

9: repeat
10: if (client,C1,client) ∈ item then
11: result = result ∪{C = (C1,client ,C2)}.
12: else
13: reads the next item.
14: end if
15: until has scanned all items under {Ppubwi

}.
16: else
17: reads the next tag set.
18: end if
19: until has scanned all tag sets
20: sends result to client.
21: client runs Dec(C,skclient)→M/⊥ for each C = (C1,client ,C2) ∈ result .
22: return

Figure 4.4: First-Time Uploading with Nonexistent Search Tags

It depicts the scenario that client uploads a document for the first time with nonexistent search
tags (Ppubagg 6≡ PpubW ,M). Client sends aggregated tag and ciphertext tag to Storage Server. Stor-
age Server cannot find identical search tags so asks client to upload search tags and ciphertext,
generates ciphertext tag itself and stores corresponding item under the new search tags and the
new ciphertext tag.

4.2. FORMAL DEFINITION AND SECURITY MODEL 63

Figure 4.5: First-Time Uploading with Existent Search Tags but Nonexistent Ciphertext
Tag

It depicts the scenario that client uploads a document for the first time with existent search tags
(Ppubagg ≡ PpubW ,M) but nonexistent ciphertext tag (titem 6≡ t). Client sends aggregated tag and
ciphertext tag to Storage Server. Storage Server finds identical search tags but cannot find iden-
tical ciphertext tag so asks client to upload ciphertext, generates ciphertext tag itself and stores
corresponding item under the new ciphertext tag.

Figure 4.6: Deduplication with Existent Search Tags and Existent Ciphertext Tag

It depicts the scenario that the server performs deduplication on a document uploaded by client
with existent search tags (Ppubagg ≡ PpubW ,M) and existent ciphertext tag (titem ≡ t). The client gen-
erates search tags and ciphertext tag, aggregates search tags into one, and sends both to Storage
Server. Storage Server finds the same aggregated tag and the ciphertext, so it asks the client to
prove its ownership. If the proof is validated, the Storage Server marks a copy for the client.

4.2. FORMAL DEFINITION AND SECURITY MODEL 64

4.2.3 Correctness

We define the document/message space M (1λ). For any λ ∈N and params← Setup(1λ),
the following correctness conditions are required for a MLSE.

Decryption Correctness. Any ciphertext processing the file from the message space
can always be decrypted to the original one, i.e., for M ∈MsgSp(1λ), (skKS,skclient)←
Setup(1λ), K ← KeyGen(M, skKS, skclient), and C ← Enc(M, K, skclient), we have that
Dec(C,skclient)→M.

Tag Correctness. It implies any two tags of two identical documents from the mes-
sage space are the same, i.e., for M = M′ ∈ MsgSp(1λ), (skKS,skclient)← Setup(1λ),
({swi},K)←KeyGen(M,skKS,skclient), and ({swi}′,K′)←KeyGen(M′,skKS,skclient), C←
Enc(M,K,skclient), and C′← Enc(M′,K′,skclient), ({Ppubwi

}, t)← TagGen({swi},C), and
({Ppubwi

}′, t ′)← TagGen({swi}′,C′), we have that ConTest(C, t)→ 1, ConTest(C′, t ′)→
1b, {Ppubwi

}= {Ppubwi
}′ and t = t ′.

PoW Correctness. It requires the client possessing the document can pass the ownership
challenge based on the document from the server.

The formalization is, for M ∈ M (1λ), (skKS, skclient) ← Setup(1λ), ({swi}, K) ←
KeyGen(M,skKS,skclient), C ← Enc(M,K,skclient), {Ppubwi

} ← TagGen({swi},C), Q ←
PoWChallenge (), and P ← PoWProve(Q, C, {Ppubwi

}), we have that PoWVerify(Q,

{Ppubwi
},C,P)→ 1.

4.2.4 Security Models

First of all, we consider the privacy of an MLSE scheme. The privacy contains two folds:
privacy against the key server and privacy against the storage server.

Privacy Against Key Server.

Even though KS’s participation helps prevent adversaries such as SS from launching
brute-force attacks, KS learning the underlying keywords when assisting the user in gen-
erating the message-derived key is also a threat. Thus, a security requirement is in demand
that given scripts of two keywords during interaction (KeyGen is an interactive protocol
between a client and the key server), the key server cannot tell their correspondence. The
distinguishing game against the key server is defined as follows:

Setup. The challenger C generates public parameters params, the public key pk and
the secret key sk, then sends them to the adversary A .

Challenge. The adversary A randomly chooses and sends (w0,w1) ∈ W to the chal-
lenger C . C randomly chooses b ∈R {0,1} and M from the message space, then sends A

yw0 and yw1 which are intermediate interaction scripts generated honestly by running

bAs mentioned in Section 4.2.2, ConTest(C, t)→ 1 and ConTest(C′, t ′)→ 1 are straightforward in our
scheme.

4.2. FORMAL DEFINITION AND SECURITY MODEL 65

W−KeyGen(w0, f lag(w0,M), skKS, skclient) and W−KeyGen(w1, f lag(w1,M), skKS,

skclient), respectively.
Output. The adversary A gives its guess b′ and wins the game if b′ = b.

Definition 33. We say that an MLSE is secure in the above game INDMLSE , if for any
PPT adversary A , the advantage

AdvIND
MLSE,A (λ) = Pr[A wins]− 1

2
(1)

is negligible.

Privacy Against Storage Server.

From observation, when each document is uploaded for the first time, the owner user
should send to the storage server the following information: the search tag, the cipher-
text tag and the ciphertext. Then the game can be described as follows: the adversary
chooses two distinct messages of identical length and sends them to the challenger, the
challenger randomly chooses one of them to derive corresponding search tag, ciphertext
tag, ciphertext and returns them; then the adversary tries to distinguish the two messages.
In short, our security model requires the ciphertext tag, and the ciphertext should not
reveal anything about their underlying message.

It is worth noting that no query on a chosen message is permitted. The reason is that as
long as the two challenge messages have opposite f lags on wi, then the adversary queries
on a new message, gets returning search tags and compares Ppubwi

with the challenge one
P∗pubwi

, the adversary will definitely win the game.
The distinguishing game, i.e., Indistinguishability against Chosen Message Attack (IND-

CMAMLSE) depicting the security requirement against a chosen message attack is defined
as follows:

Setup. By running Setup(1λ)→ (params,skKS,{skclient}), the challenger C aquires
(params,{skclient}) and the adversary A aquires params.

Challenge. The adversary A picks two documents M0,M1 s.t. |M0|= |M1| and f lag(wi,

M0) = f lag(wi,M1) for i = 1, · · · ,m. A sends M0,M1 to the challenger C . C picks b ∈R

{0,1}, runs KeyGen(Mb,skKS,skclient) → ({kwi},{swi},Kb), Enc(Mb,Kb,skclient) → Cb,
and TagGen({swi},Cb)→ ({Ppubwi

}, t), sends ({Ppubwi
}, t,Cb) to A .

Output. The adversary A gives its guess b′ and wins the game if b′ = b.

Definition 34. We say that an MLSE satisfies indistinguishability in the above game if
for any unpredictable MLE-valid source M and any PPT adversary A , the advantage

AdvIND−CMA
MLSE,A (λ) = |Pr[A wins]− 1

2
| (2)

is negligible.

4.2. FORMAL DEFINITION AND SECURITY MODEL 66

Tag Consistency.

Duplicate faking attack is a threat that happens in the following situation. A malicious
client uploads a fake ciphertext C′ of a message M′ with an inconsistent tag t, when an
honest client uploads the same tag t honestly generated from a ciphertext C of a message
M, the server observes the equality of these two tags, thereby wrongly believing that C

and C′ are encrypted from the same message. Then the server performs deduplicating
operations, only keeping C′. Later, when the honest client wants to retrieve its document,
the server returns C′. The honest client decrypts C′ and obtains M′. Accordingly, s/he
cannot obtain the original message M any more. Tag consistency is a security requirement
defined to exclude duplicate faking attacks, which is formalized by Bellare et al. in [63].

Our tags are deterministic and generated from the ciphertext. In addition, the first time
that a document is uploaded, generating ciphertext tag t is undertaken by the storage
server. That is, our mechanism will not encounter the above attack from clients due to the
workflow in Algorithm 2.

Proof of Ownership.

Our tags are generated on document-level in a deterministic way rather than on block-
level in a random way, thus we adjust the security notion of PoW in [83] for block-
level deduplication to satisfy our security requirements. The game depicting the security
requirement against an Uncheatable Chosen Distribution Attack (UNC-CDA) is defined
as follows:

Setup. The challenger C generates parameters by running Setup(1λ)→ (params,skKS,

{skclient}) and sends params to the adversary A . The adversary A sends the challenger
C a MLE-valid source M [63]. C runs M (1λ)→ (M,Z), KeyGen(M,skKS,skclient)→
({kwi},{swi},K), Enc(M,K,skclient) → C, TagGen({swi},C) → ({Ppubwi

}, t) and sends
(Z,C,{Ppubwi

}, t) to A .
Query. The adversary A inquires of the challenger C about the response Pi for any

challenge Qi of the above ({Ppubwi
}, t).

Challenge. The challenger C runs PoWChallenge()→Q and sends the challenge Q to
A .

Output. The adversary A outputs a respond P∗ and wins the game if PoWVerify(Q,

{Ppubwi
},C,P∗)→ 1.

Definition 35. We say that an MLE is UNC-CDA secure in the UNC−CDAMLSE game,
i.e. under the chosen distribution attack, if for any unpredictable source M and any PPT
adversary A , the advantage

AdvUNC−CDA
MLSE,A (λ) = Pr[A wins] (4)

4.3. THE PROPOSED SCHEME 67

is negligible.

4.3 The Proposed Scheme

For simplicity, we denote a blind signature scheme as BS and a standard signature scheme
as S for short.

4.3.1 An Overview of Our Construction

We start our system prototype on the foundation of a dual-server model. By separating
the key server from the storage server, unauthorized users cannot acquire keys for encryp-
tion and tag generation so that brute-force attacks are prevented. Our keys are hidden
keywords of the processed document. An interactive blind signature scheme between the
key server and a client is in use to blind keywords so that the key server helps the client
generate keyword keys but still has no idea about the processed keyword.

Then we add search functionality by extracting search tags from each keyword. One
keyword has two states, e.g., 0 and 1, which denote the current keyword is included
by the document and otherwise, respectively. These two states will be appended to the
keyword and then involved in the generation of search tags, thereby enabling negative
keyword search. In addition, by submitting multiple search tags corresponding to several
keywords, multi-keyword search also comes true. Besides, as shown in the deduplication
workflow, we can use techniques such as aggregate signatures [94] to merge multiple tags
into one and only transmit this tag at the very beginning. If there is a matching tag in
storage, then there is no need to transmit each search tag corresponding to each keyword,
thereby further reducing the communication burden caused by multiple tags.

We use a hash to implement PoW. In the process of deduplication, the challenge from
the storage server is in the form of (k,R) where k is the sequence number of keywords and
R is a randomly chosen number. The client will prove that s/he is the document owner by
responding to the storage server a hash value of Ppubwk

||C2||R as the proof, which is the
concatenation of the kth search tag, a part of ciphertext and the random number. Finally,
the storage server verifies the proof by re-computing the hash value of the concatenation.

4.3.2 Detailed Construction

Setup(1λ)→ (params,skKS,{skclient}): given the system security parameter λ , the pub-
lic parameters {paramsBS, paramsS} of the blind signature scheme and the standard sig-
nature scheme are generated. It runs BS.KeyGen(1λ)→ (pkBS,skBS) to get the pair of
public key and secret key. Γ1 ∈ paramsBS is the signature domain of the blind signa-
ture scheme and Γ2 ∈ paramsS is the domain of secret keys of the standard signature

4.3. THE PROPOSED SCHEME 68

scheme. lt is the length of ciphertext tag. lPoW is the length of proof of ownership.
PRG(·) is a pseudo-random generator with the input length λ and the output length is
the length of message to be encrypted in SE. W is an m-size specified keyword set.
L(λ) is a linear function of λ . Hash functions are collision-resistent: H1 : {0,1}∗ →
{0,1}λ , H2 : {0,1}∗→ Γ1, H3 : Γ1→ Γ2, H4 : {0,1}∗→{0,1}lt and H5 : {0,1}∗→ lPoW .
SE = {G,E,D} is a pair of symmetric encryption and decryption algorithms. It runs
G(1λ)→ Kclient to get a unique key Kclient for each client. The outputs are the public pa-
rameter params = {paramsBS, paramsS,H1,H2,H3,H4,PRG(·),SE,m,W ,L(λ)}, the key
server’s secret key skKS = skBS and each client’s secret key skclient = {pkBS,Kclient}.

KeyGen(M,skKS,skclient)→ ({kwi},{swi},K): given a document M, the key server’s
secret key skKS and the current client’s secret key skclient , it outputs keyword keys {kwi},
search keys {swi} and the message-locked key K.

1. W−KeyGen(wi, f lag(wi,M),skKS,skclient)→ (kwi,swi): given a keyword wi ∈W ,
f lag(wi,M) which is derived from wi and M, the key server’s secret key skKS and
the current client’s secret key skclient , it randomly chooses rwi , computes hwi =

H2 (wi || f lag(wi,M)), interacts with the key server by running BS.Blind(hwi, rwi,

pkBS)→ xwi , BS.Sign(xwi,skBS)→ ywi , and BS.Unblind(ywi,rwi, pkBS)→ kwi , com-
putes swi = H3(kwi), and outputs kwi and swi .

2. M−KeyGen({kwi})→ K: given {kwi}, it computes the message-locked key K =

⊕wi∈W H1(i||kwi||M) and outputs K.

Enc(M,K,skclient) → C: given a document M, the message-locked key K and the
client’s secret key skclient , it computes C1 = EKclient (K||H1(M)), C2 = PRG(K)⊕M, it
outputs the ciphertext C = (C1,C2).

Dec(C,skclient)→M/⊥: given the ciphertext C = (C1,C2) and the owner client’s secret
key skclient , it computes K||h = DKclient (C1),M′ = PRG(K)⊕C2, outputs the document M′

if H1(M′)≡ h and ⊥ otherwise.
TagGen({swi},C)→ ({Ppubwi

}, t): given search keys {swi} and the ciphertext C, it out-
puts the search tag set {Ppubwi

} and the ciphertext tag t.

1. W−TagGen(swi)→ Ppubwi
: given swi , unlike the usual key generation in a standard

signature scheme, here swi is designated rather than chosen randomly, then Ppubwi
is

computed as usual by running S.KeyGen(1λ ,swi)→ Ppubwi
, outputs the search tag

Ppubwi
.

2. C−TagGen(C)→ t: given C = (C1,C2), it computes t = H4(C2) and outputs the
ciphtertext tag t.

PoWChallenge() → (k,R): it randomly picks a sequence number of keywords k ∈
{1, · · · ,m} and a random string R ∈ {0,1}L(λ), outputs the challenge (k,R).

4.4. SECURITY PROOF 69

PoWProve((k,R),C2,{Ppubwi
}) →P: given a challenge (k,R), a part of ciphertext

C2, search tags {Ppubwi
}, it finds the kth search tag Ppubwk

∈ {Ppubwi
}, computes P =

H5(Ppubwk
||C2||R) and outputs the proof P .

PoWVerify((k,R),{Ppubwi
},C2,P)→ 0/1: given the challenge k, the search tag set

{Ppubwi
}, the ciphertext C = (C1,C2) and the proof P , it finds the kth Ppubwk

∈ {Ppubwi
},

outputs 1 if P = H5(Ppubwk
||C2||R) and 0 otherwise.

4.3.3 Correctness

1. Decryption Correctness. It is straightforward to observe that our scheme satisfies
Decryption Correctness since we use symmetric encryption.

2. Tag Correctness. Suppose that two document M = M′, since computations are de-
terministic, we have equations of their search keys {swi}= {swi}′, message-locked
keys K = K′, ciphertexts C = C′, search tags {Ppubwi

} = {Ppubwi
}′ and ciphertext

tags t = t ′.

3. PoW Correctness. When a client owns a document M, it can obtain search keys and
the message-locked key ({swi},K)← KeyGen(M,skKS,skclient), a part of ciphertext
C2 ∈ C← Enc(M,K,skclient), tags {Ppubwi

} ← TagGen({swi},C). With challenge
(k,R)← PoWChallenge() from Storage Server, client computes the response P←
PoWProve((k,R),C2,{Ppubwi

}) which is the hash on Ppubwk
||C2||R. It is observed

that P must pass the PoW check PoWVerify(Q,{Ppubwi
},C2,P)→ 1 since the

check is re-computing the hash value and comparing the two hash values.

4.4 Security Proof

In this section, we present the security analysis and proofs of our MLSE scheme. Since
tag consistency is explicit according to Section 4.2.3 and 4.2.4, we will not repeat the
analysis here. Theorems as well as proofs are given as follows. Among them, the seman-
tic security, i.e., Indistinguishability against Chosen Message Attack (IND-CMAMLSE) is
proved in Random Oracle Model using the game-based methodology.

Theorem 4. Our MLSE scheme is secure against the key server if the blind signature

scheme satisfies blindness.

Proof. Here we only provide a sketch of the proof. Suppose that our MLSE is not secure
against the key server, i.e. given two keywords w0,w1 and two median values yb,y1−b,
there exists an adversary A who can win the INDMLSE game by pointing out their cor-
respondence with non-negligible advantage. In the view of a signer S , w0,w1 are two
messages and ywb,yw1−b are two signatures of the blind signature scheme, thus S can run

4.4. SECURITY PROOF 70

A inside to tell the right order of (w0,w1), thereby breaking the blindness of the blind
signature scheme with a non-negligible advantage.

Theorem 5. The adversary’s advantage ε(λ) in the IND−CMAMLSE game

ε(λ)≤ m · εBS(λ)+ εPRG(λ)+ εROR(λ)

is negligible, where m is the number of keywords of W , SE is ROR secure with the adver-

sary’s advantage εROR(λ), BS satisfies unforgeability with the forger’s advantage εBS(λ),

PRG is a pseudo-random generator with the distinguisher’s advantage εPRG(λ).

Proof. We prove that our construction satisfies indistinguishability by introducing a se-
quence of games transiting from the IND−CMAMLSE game to the case in which all
information witnessed by the adversary seems random. We show that each transition is
indistinguishable due to the security of the building blocks.

Game0. This game is the same to the game defined in External Privacy.
Game1. This game is identical to the previous one except that the input and output are

recorded in a table [·,H1(·)]. If the input of H1 appears for the first time, then randomly
choose a string from {0,1}λ as its output and record in the table. If there is an existing
row with the same input in the table, then return the recorded output in the row.

A1’s winning probability in Game1 is equal to A0’s winning probability in Game0:

Pr[A1 wins] = Pr[A0 wins].

Game2. If there is a query X s.t. H1(X) has been defined due to an earlier query, the
challenger C aborts. If C does not abort, this game is identical to the previous one.

Due to the unforgeability of the blind signature scheme, the adversary cannot forge
signatures on (wk|| f lag(wk,Mb)), then it never looks up the table [·,H1(·)] with the in-
put i||kwi||Mb. In A2’s view, H1(i||kwi||Mb), the output of H1 is indistinguishable from
a random string from {0,1}λ except when C aborts. Thus, their multiplication Kb =

∏wi∈W H1(i||kwi||Mb) is also indistinguishable from a random string from {0,1}λ except
when C aborts.

The difference between A2’s winning probability in Game2 and A1’s winning proba-
bility in Game1 is:

|Pr[A2 wins]−Pr[A1 wins]|

=Pr[C aborts]

=Pr[
m
∪

k=1
Ppubwk ,b

is distinguished from Pk]

≤
m

∑
k=1

Pr[Ppubwk ,b
is distinguished from Pk]

=m · εBS(λ).

4.4. SECURITY PROOF 71

Game3. This game is identical to the previous one except that Cb,2 is replaced with a
random string C′2 of the same length of Cb,2 and tb is replaced with t ′ = H4(C′2).

PRG is a pseudo-random generator with the seed Kb which is indistinguishable from a
random string from {0,1}λ , then PRG(Kb) is indistinguishable from a random string of
the output length. Therefore, Cb,2 = PRG(Kb)⊕Mb is indistinguishable from the random
string C′2 and tb is indistinguishable from t ′ except with negligible probability εPRG(λ).

The difference between A3’s winning probability in Game3 and A2’s winning proba-
bility in Game2 is:

|Pr[A3 wins]−Pr[A2 wins]|= εPRG(λ).

Game4. This game is identical to the previous one except that Cb,1 = EKclient

(Kb||H1(Mb)) is replaced with C′1 = EKclient ({0,1}|Kb|+λ) where {0,1}|Kb|+λ is a (|Kb|+λ)-
length randomly chosen string.

Since SE is ROR secure, Cb,1 is indistinguishable from C′1 except with negligible prob-
ability εROR(λ).

The difference between A4’s winning probability in Game4 and A3’s winning proba-
bility in Game3 is:

|Pr[A4 wins]−Pr[A3 wins]|= εROR(λ).

In this game, the adversary A4 does not receive any information depends on the chal-
lenge bit. Thus we have:

Pr[A4 wins] =
1
2
.

εBS(λ),εROR(λ),εPRG(λ) are negligible, m is fixed,

ε(λ) = |Pr[A0 wins]− 1
2
|

=|(Pr[A0 wins]−Pr[A1 wins])

+(Pr[A1 wins]−Pr[A2 wins])

+(Pr[A2 wins]−Pr[A3 wins])

+(Pr[A3 wins]−Pr[A4 wins])

+Pr[A4 wins]− 1
2
|

≤|Pr[A0 wins]−Pr[A1 wins]|

+ |Pr[A1 wins]−Pr[A2 wins]|

+ |Pr[A2 wins]−Pr[A3 wins]|

+ |Pr[A3 wins]−Pr[A4 wins]|

≤m · εBS(λ)+ εPRG(λ)+ εROR(λ).

thus is negligible. This concludes the proof of Theorem 5.

4.4. SECURITY PROOF 72

Theorem 6. The adversary A ’s advantage ε(λ) in the UNC−CDAMLSE game

ε(λ)≤ 2−µ(λ)+(εCR,H5(λ)+
qPoW (λ)

2L(λ)
).

is negligible where µ(λ) is the min-entropy of block-source M , H5 is collision-resistent

with the adversary’s advantage εCR,H5 , qPoW (λ) is the number of queries in the UNC−
CDAMLSE game, L(λ) is the length of the random string R. H4 is collision-resistent with

the adversary’s advantage εCR,H4(λ), lt is the output length of H4, m is the number of

keywords of W .

Proof. Here we only provide a sketch of the proof. A wins the game means that given
the challenge Q = (k,R), it can render a proof P∗ s.t. PoWVerify(Q,{Ppubwi

},C2,P
∗)

→ 1.
Let Guessed be the event that M is correctly guessed, i.e. Pr[Guessed] = 2−µ(λ).

On one hand, when Guessed happens, A always works out the real response P s.t.
PoWVerify(Q,{Ppubwi

},C2,P)→ 1. On the other hand, when ¬Guessed happens, A

has the following two methods to win the game:

1. Suppose k∗ 6= k (which implies P∗pubwk
6= Ppubwk

) or R∗ 6= R. In order to let
PoWVerify((k,R),{Ppubwi

},C2,P
∗)→ 1, it must have P∗ = H5(Ppubwk

||C2||R) =
H5(P∗pubwk

||C∗2 ||R∗) = P where P is the proof honestly generated. That means we
find a collision on the hash function H5. Therefore, its winning probability in this
case is same to εCR,H5(λ).

2. Suppose k∗ = k and R∗ = R. In Query phase, A first builds a table [t j,k j,R j,P j] of
queries to record inputs and outputs. When a query (t j,k j,R j) comes, C looks up
the table [·,H4(·)] with the output value t j and finds the corresponding input value
C2, j. Then it computes P j = H5(Ppubwk, j

||C2, j||R j), answers the query with P j and
record P j in the table.

In Output phase, after receiving the challenge Q = (k,R), A finds the row where
k j = k and R j = R in the above table and returns P∗ = P j as the response to win
the game, otherwise A fails.

The table [t j,k j,R j,P j] could have 2lt ·m ·2L(λ) inputs at least, thus the challenge
Q = (k,R) appears in the table with probability qPoW (λ)

2lt ·m·2L(λ) at most. Then when the
collision of the hash function H4 does not happen on t j, P∗ = P j is the hon-
estly generated response and it must make PoWVerify((k,R),{Ppubwi

},C2,P
∗)→

1. Therefore, the corresponding probability is
qPoW (λ)·(1−εCR,H4(λ))

2lt ·m·2L(λ) .

qPoW (λ) is polynomial, εCR,H4(λ),εCR,H5(λ) are negligible, lt ,m are constant, 2L(λ)

4.5. EXTENSIONS ON PROOF OF STORAGE 73

is exponetial, the winning probability

ε(λ) = Pr[Guessed] ·Pr[A wins|Guessed]

+Pr[¬Guessed] ·Pr[A wins|¬Guessed]

≤ 2−µ(λ)+(1−2−µ(λ))(εCR,H5(λ)+
qPoW (λ)(1− εCR,H4(λ))

2lt ·m ·2L(λ)
)

≤ 2−µ(λ)+(εCR,H5(λ)+
qPoW (λ)

2L(λ)
)

thus is negligible.

The proof of Theorem 6 is therefore concluded.

4.5 Extensions on Proof of Storage

When using cloud services at untrusted servers, the risk of data tampering and data dele-
tion in storage always bothers users. On the other hand, some trusted servers may suffer
system errors or external attacks and then misbehave unintentionally, such as modifying
data content or clearing storage. Therefore, with the demand of verifying data possession
on the server, a new security requirement named Proof of Storage has been considered
in [85, 91]. PoS requires the server to generate proof based on both the message stored
and the user’s challenge, which should convince the user that the message stored is intact.
In addition, the trivial way that the user should retrieve the whole message to check data
possession could be avoided. The server only needs to access a part of the message, i.e.,
corresponding message blocks designated by the challenge to derive the proof, which will
demonstrate the availability of the whole message with overwhelming probability.

Since we will use the instantiation of [85] as a building block to achieve PoS function-
ality, first we review the generic syntax of PoS [85]:

KeyGen(1λ)→ (pkPoS,skPoS): given the security parameter λ , it outputs the public key
pkPoS and the secret key skPoS for PoS.

TagBlock(pkPoS,skPoS,m[j], j)→ t j: given the public key pkPoS, the secret key skPoS,
the message block m[j] and the block index j, it outputs the block tag t j.

GenProof(pkPoS,{m[j]},QPoS,{t j})→PPoS: given the public key pkPoS, all message
blocks {m[j]}, the PoS challenge QPoS and all block tags {t j}, it outputs the PoS proof
PPoS.

CheckProof(pkPoS,skPoS,QPoS,PPoS)→ 0/1: given the public key pkPoS, the secret
key skPoS, the PoS challenge QPoS and the PoS proof PPoS, it outputs the failure or
success 0/1.

Our construction can be slightly modified and extended to support the PoS mechanism.
There are two problems to be solved. Firstly, due to the idea of [85], the content stored

4.5. EXTENSIONS ON PROOF OF STORAGE 74

should be parsed into several blocks, and each block has its block tag accordingly. That
means our scheme needs to be adjusted in order to support block tags. Thus, in TagGen,
an additional BL−TagGen is added to compute block tags from ciphertext blocks C2[j]

for j = 1, · · · ,N where N is the number of blocks. Another issue is, which components
kept by the document owner and the server respectively of our scheme could be used
as the key pair in PoS? Besides, in terms of the multi-owner scenario, each owner of
the document stored should have a secret key in common. The aggregated search key
sW ,M and the aggregated search tag Ppubagg seem to satisfy the above requirements. That
is, the user who uploads the document for the first time uses the aggregated search key
sW ,M computed from all search keys corresponding to the current document to derive
each block tag and uploads them together with the ciphertext. Then when one of the
authenticate owners would like to check the availability of the document and comes up
with a PoS challenge, the storage server uses the aggregated search tag Ppubagg (PpubW ,M

on the client side) computed from uploaded search tags of the current document as the
PoS public key to derive the proof. Finally, the owner will verify the validity of the proof.

The following algorithms could be a supplement to our scheme in order to implement
PoS functionality. For simplicity, PoS refers to the PoS protocol [85] according to the
syntax of PoS mentioned above.

BL−TagGen({Ppubwi
},{swi},C2[j], j)→ t j: given all search tags {Ppubwi

}, all search
keys {sw,i}, the jth ciphertext block C2[j] and the block index j, the owner aggregates all
search tags and all search keys respectively to get PpubW ,M and sW ,M respectively in the
same way as Algorithm 2, then runs PoS.TagBlock(PpubW ,M ,sW ,M,C2[j], j)→ t j to output
the block tag t j.

PoSChallenge()→QPoS: the document owner outputs a challenge QPoS.
PoSProve({Ppubwi

},C2,QPoS,{t j})→PPoS: given all search tags {Ppubwi
}, a part of

ciphertext C2, the challenge QPoS and all block tags {t j}, the server first aggregates all
Ppubwi

to get Ppubagg , then runs PoS.GenProof(Ppubagg ,{C2[j]},QPoS,{t j})→PPoS and
outputs the proof PPoS.

PoSVerify({Ppubwi
},{swi},QPoS,PPoS)→ 0/1: given all search tags {Ppubwi

}, search
keys {sw,i}, the challenge QPoS and the proof PPoS, the owner aggregates all search tags
and all search keys respectively to get PpubW ,M and sW ,M respectively in the same way as
Algorithm 2, runs PoS.CheckProof(PpubW ,M ,sW ,M,QPoS,PPoS)→ 0/1 and outputs fail-
ure or success 0/1.

4.6. PERFORMANCE EVALUATION 75

4.6 Performance Evaluation

4.6.1 Experimental Analysis

In this section, we present the experiment results of our scheme implemented in C++.
Our experiments are conducted on a PC with Intel Core i7-4770 CPU (8-core 3.4GHz)
and 16GB RAM running 64-bit Windows 7 Enterprise.

Fig. 4.7 compares the time cost of KeyGen, TagGen and PoW related algorithms of our
scheme and schemes in [81, 83] offering a 80-bit security level. We utilize RSA-based
blind signature [56] as the blind signature scheme in our scheme and the scheme in [81],
Schnorr signature [95] as the standard signature scheme and 50-keyword list in ours. The
document size for experiments is 1 MB. For the scheme in [83] with 160-bit group order,
we let the block size be 4 KB which leads the block number of each document to be 256
and the sector number be 128.
KeyGen Performance. As the illustration of KeyGen shows, our algorithms W−KeyGen

and M−KeyGen take 121.16 and 322.16 milliseconds (ms) respectively, since W−KeyGen

consists of 50 blind signing processes according to 50 keywords and their flags and
M−KeyGen consists of 50 XOR operations.

B−KeyGen and M−KeyGen take 1499.7 and 51.7 ms respectively in the comparing
scheme [83]. Their B−KeyGen includes 256 operations of mapping a message block of
128 sectors to a group element, and their M−KeyGen includes an operation of hashing
the whole message. Thus, the integral efficiency of our KeyGen is better than theirs.

The scheme in the comparing scheme [81] supports neither search nor block-level dedu-
plication, so it only has M−KeyGen algorithm, which is 55 ms. The algorithm uses an
RSA-OPRF protocol which is similar to our W−KeyGen algorithm for each keyword,
and there is an extra PRF computation after the RSA-based blind signature.

Our KeyGen has better performance than that of [83] and KeyGen of [81] is better
than ours. It is worth noting that our scheme supports search with a little more time
consumption of KeyGen and the extra time cost cannot be detected by users.
TagGen Performance. Our W−TagGen and C−TagGen take 35 and 6067.84 ms re-
spectively. W−TagGen consists of 50 public key generation operations from designated
secret keys of the standard signature scheme, and C−TagGen consists of ciphertext gen-
eration (6014.2 ms) and hashing the ciphertext (53.64 ms).

B−TagGen and M−TagGen in [83] take 88803.7 and 5.7 ms respectively. M−TagGen

contains a computation from Zp to the group G, while B−TagGen contains 256 ∗ 129
exponential calculations and 256∗128 multiplications on the group G. To simplize com-
parison, Enc on each message block is not counted in the time cost of B−TagGen, though
encryption should be done before the above power and multiplication calculations in their
B−TagGen.

For supporting neither search nor block-level deduplication, the scheme in the compar-

4.6. PERFORMANCE EVALUATION 76

Table 4.1: PoS Performance

of blocks # of sectors BL-TagGen PoSProve PoSVerify
256 128 2919.8 400.28 1164.4

1 All durations are measured in milliseconds and for 50 keywords.
2 # of blocks denotes the number of blocks of each document which size

is 1 MB. # of sectors denotes the number of sectors in each block.
BL-TagGen, PoSProve, PoSVerify respectively denote the time cost of
computing block tags, generating the proof and verifying the proof in
PoS process.

ing scheme [81] only has C−TagGen algorithm, which costs 52.4 ms and is similar to our
C−TagGen, including an operation of hashing the whole ciphertext. Enc on the whole
ciphertext is not counted for the same reason mentioned above.

Our TagGen time cost mainly comes from encryption. It is more reasonable to count
this encryption time cost in Enc since other schemes also spend time on encryption. Ex-
cluding the encryption time, our time cost is only 36 ms more than that of [81] but provides
addtional functionality of search. Thus, the efficiency is still satisfactory.
Discussion. We evaluate PoS extension (Section 4.5) performance in Table 4.1. We utilize
the second scheme of [91] as our embedded PoS mechanism, and the document size is
1 MB, the block size is 4 KB which lead the block number of each document to be
256 and the sector number to be 128 to measure the time cost on generating block tags.
B−TagGen takes 2919.8 ms since it contains 256 ∗ 127 additions on Zp (to aggregate
128 sectors in each block), 256 ∗ 2 exponential calculations and 256 multiplications on
the group G. Thus, when block tags are also attached (extra time cost for computing
block tags is added to time cost of our TagGen), its performance is still much better than
that of [83].
PoW Performance. In terms of PoW related algorithms, our scheme also outweighs the
contrast scheme in [83]. The scheme of [81] does not provide a detailed PoW solution
in their construction, so here we just compare ours with that of [83]. PoWProve and
PoWVerify roughly cost 9.96 and 10 ms respectively since they correspond to computing
the hash value of the concatenation of the kth search tag, a part of ciphertext and the
random number.

For the scheme in [83], we assume the challenge of their scheme consists of half of
the number of blocks, i.e., 128 (i,vi) pairs, then their PoWProve and PoWVerify each
consist of 128 exponential operations and 127 multiplications on the group G. PoWVerify

consists of an additional value comparison of two elements on the group G. Thus, they
take about 414.4 and 414.4 ms respectively.

4.6. PERFORMANCE EVALUATION 77

Figure 4.7: Algorithm Performance

4.6.2 Comparison with Existing Schemes

Table 4.2 compares some existing MLE schemes with ours. Our scheme is a deterministic
one that achieves security in the random oracle model. When considering efficiency, un-
like other schemes [83, 86] which utilize pairing in tag equality comparison, our scheme
directly compares the values of two tags, which certainly takes less time. In addition, our
scheme provides search solution further while other comparing schemes do not support
this functionality. In terms of security issues, our scheme is proved under random ora-
cles while some comparing schemes [63, 82] achieve security under standard models and
[81] does not explicitly provide security proof. Most message-locked encryption schemes
execute deterministic algorithms, including ours and only R-MLE[86] among comparing
schemes provides a solution to randomization. However, the solution is complex and very
time-consuming. Moreover, our scheme has the merit of supporting PoW mechanism, and
PoS extensions, which cannot be achieved simultaneously in [63, 81, 82, 84, 86].

In addition to evaluating deduplication relevant algorithms in Section 4.6.1, we also
consider the computation complexity comparison between our scheme and the combina-
tion of a traditional MLE and a superimposed PEKS [2] regarding search functionality
in Table 4.3. Our trapdoor generation is not as good as the combination due to the blind
signature but defends keyword guessing attacks suffered by the combination. Moreover,
our ciphertext generation and test outperform that of the combination. The combination
has m pairings and m more exponentiations than ours. Our test algorithm merely has
lightweight operations such as hashing, while the combination has l ∗m parings.

4.7. CHAPTER SUMMARY 78

Table 4.2: Feature Comparison

pairing search model D/R PoW PoS
XtCIH[63] 7 7 STD D 7 7

XtDPKE[63] 7 7 STD D 7 7

R-MLE[86] 3 7 RO R 7 7

D-MLE[86] 3 7 RO D 7 7

[82] 7 7 STD D 7 7

[81] 7 7 — D 7 7

[83] 3 7 RO D 3 3

[84] 7 7 RO D 3 7

our scheme 7 3 RO D 3 3

Pairing denotes whether the MLE scheme uses pairing to check the equality
of tags. Search denotes whether it supports search. Model indicates whether
it is in the Random Oracle (RO) or the Standard model (STD). D/R denotes
whether it is deterministic or randomized. PoW and PoS respectively denote
whether it supports PoW and PoS.

Table 4.3: Search Functionality Comparison

Trapdoor Ciphertext Test
MLE + PEKS lCe mCp+2mCe lmCp

Ours lCe+ lCi+2lCm mCe -

l denotes the number of keywords in query, m denotes the
number of keywords in document, Cp refers to pairing, Ce
refers to exponentiation, Ci refers to inversion, and Cm refers
to multiplication.

4.7 Chapter Summary

In this chapter, we introduced the notion of message-locked searchable encryption, which
has merits of both message-locked encryption and searchable encryption in cloud storage
systems. We presented the security definitions, i.e. privacy, tag consistency and PoW for
MLSE and efficient construction. We also proved that our proposed scheme satisfies the
above security requirements and presented an extension of the proposed scheme to obtain
PoS functionalities.

Chapter 5

Broadcast Authenticated Encryption
with Keyword Search

In this chapter, striving to make multi-reader access possible in the scope of PEKS, we first
formalize a primitive named Broadcast Authenticated Encryption with Keyword Search
(BAEKS) and corresponding security models. A detailed BAEKS scheme is then pre-
sented and proved secure under Decisional Bilinear Diffie-Hellman (DBDH) assumption
in the Random Oracle Model, followed by a comparison with existing works. Parts of this
work appeared in [96].

5.1 Introduction

Public-key Encryption with Keyword Search (PEKS) [2] was introduced by Boneh et al.
to enable keyword search on encrypted content. However, in the textbook PEKS model,
anyone can encrypt a keyword of interest and then use it to test a searching trapdoor,
which is known as the Keyword Guessing Attack (KGA) [3, 4]. To address the aforemen-
tioned problem, techniques such as public-key authenticated encryption with keyword
search (PAEKS) [35], Dual-Server PEKS (DS-PEKS) [34], and Server-Aided Public-key
Encryption with Keyword Search (SA-PEKS) [77], were proposed to eliminate the threat.
In PAEKS, in addition to encrypting the keyword, the sender authenticates it by taking
the sender’s secret key as part of the input, thus preventing others from freely generating
a ciphertext for testing.

While PEKS and PAEKS are designed for the single receiver setting, there are demands
for allowing multiple receivers to perform keyword search in practice. For instance, due
to the city lockdown caused by COVID-19, internet video-on-demand services have be-
come popular. Without losing generality, we assume that a service provider is offering
various videos that are stored in cloud storage for a paying viewer to watch at any time.
The available videos can be labeled by the content type, such as “Animation”, “Sports”,

79

5.1. INTRODUCTION 80

“News”, and “Movie”, or the genre, such as “Comedy”, “Action”, and “Thriller”. If se-
curity and privacy are not a concern, a viewer can search the videos of interest by simply
providing the searching keywords to the cloud server, which will perform the search and
return the results to the user.

In the above application scenario, to protect the content of the videos uploaded by the
service provider and the privacy of the search queries made by the viewers, a secure and
practical searchable encryption scheme for multiple receivers is required. However, some
prominent issues need to be addressed. On the service provider side, how to support multi-
user accessing should be first considered. The trivial way is to share an identical key with
every paying user, but it suffers from the key compromise issue. If any user is compro-
mised or corrupted, the security of the entire system collapses, and it is nearly impossible
to trace the traitor. To avoid the risk of key compromise, public-key solutions for key-
word search supporting multi-user access are more promising. The trivial way is to issue
a separate PEKS (or PAEKS) key pair for each user and encrypt a video’s keyword under
each user’s public key. Later, the user generates a trapdoor with her/his secret key, and
the server tests the trapdoor with each video’s searchable ciphertext (encrypted keyword)
to locate the matching ones without learning the keyword being located a. However, such
a trivial solution is impractical for a large group of receivers due to the repetitive keyword
encryption operations, massive storage overhead and a booming of transmission band-
width. Thus, mitigating operation overhead, data redundancy, and communication cost
turn to be the main challenges in deploying public-key based keyword search for multiple
receivers.

Although PEKS and its variants considered the keyword privacy in the ciphertext and/or
trapdoor, identity privacy has been neglected in the prior research. Identity privacy means
given a searchable ciphertext, the identity of the intended receiver is protected. In addi-
tion, for PEKS with multiple receivers, it is also desirable to protect the identity of the
searching user who generates a searching trapdoor. As multiple nations and regions issued
user privacy acts [97, 98], the collection, storage, and analysis of any user information
have been regulated, and user identity privacy plays a role as important as user data pri-
vacy. In traditional public-key encryption, a similar security notion named “key-privacy”
or “anonymity” b has been formalized by Bellare et al. in [99], demanding that given a
ciphertext, eavesdroppers should not be able to tell under which specific public key the
given ciphertext is generated. In order to provide privacy protections for the users from
all angles, the key privacy should also be taken into consideration in PEKS (or PAEKS),
i.e., a searchable ciphertext ought not to reveal the user identities of all intended/target re-
ceivers. On the other hand, different from the traditional public-key encryption in which

aWe remark that the video content should also be encrypted, e.g., by using a standard mechanism such
as Broadcast Encryption, and we only focus on the searching phase in this chapter

bThe anonymity we discuss here only considers the application layer, hiding user identity using tech-
niques on other layers such as IP address anonymization is beyond the scope of our work.

5.1. INTRODUCTION 81

only the ciphertext is exposed, in PEKS, the trapdoor is another potential spot of user
identity exposure to the cloud server and other attackers. Back to the internet video-on-
demand application, besides the security concern that no viewer would like parties other
than the service provider to know whom a searchable ciphertext is prepared for, another
practical privacy consideration is to conceal who is searching for the videos, i.e., the iden-
tity of a searching user should not be inferred from a searching trapdoor. We name such a
key-privacy property regarding the trapdoor as “trapdoor anonymity”.

Taking the application of the aforementioned internet video-on-demand service as an
example, we summarize the desirable security and functionality features of a privacy-
preserving keyword search scheme for multiple receivers as follows:

• supporting the multi-receiver setting;

• minimizing the online computation and communication overhead (trapdoor com-
putation, trapdoor size, and testing);

• ensuring content confidentiality (searchable ciphertext semantic security);

• preserving search (trapdoor) privacy;

• allowing system expansion (scalable universal keyword set);

• maintaining recipient identity privacy for whom the searchable ciphertext is created
(anonymity); and

• concealing user identity privacy from whom the trapdoor is submitted (trapdoor
anonymity).

To the best of our knowledge, no existing PEKS (or PAEKS) scheme can satisfy all
the above features. PAEKS [35] is not capable of supporting multiple receivers decrypt-
ing the same ciphertext. Similarly, Searchable Symmetric Encryption (SSE) [1] is also
not qualified because of the key management issue. The public-key primitive, Broadcast
Encryption (BE) [61, 100, 101] seems suitable to be integrated with keyword search. Un-
fortunately, these schemes are not anonymous, exposing user identity information since
the broadcast receiver set is taken as the input of the decryption algorithm. Its combina-
tion [72] with SSE realizes the multi-receiver setting and mitigates the key compromise
but has unpromising communication performance for their multi-round interactions of to-
ken (trapdoor) generation and disallows universal keyword set expansion. The existing
integrations [102–104] of BE and keyword search are unsatisfactory as well. Neither the
content confidentiality nor the search (trapdoor) privacy is ensured by [102]. The test al-
gorithm of [103] takes as input the set of intended receiver identities, not considering the
security requirement of anonymity. Besides the public parameter size, the trapdoor size of
[104] is also linear to the maximal number of receivers, resulting in large computational

5.1. INTRODUCTION 82

and communication overhead. It additionally suffers from limited expressive ability, i.e.,
a fixed universal keyword set. Moreover, their testing algorithm takes the broadcast re-
ceiver set as input, allowing the cloud server to access more sensitive information like all
viewers’ identities in the aforementioned scenario.

5.1.1 Related Work

Broadcast encryption (BE) [60] was introduced in 1993. It is for broadcasting messages
through the public channel while keeping confidentiality. The message sender is to en-
crypt the message for a specified set of receivers so that only the intended receivers can
access the message. BE outweighs the traditional point-to-point encryption in terms of
that intended users are able to get the message by decrypting the same ciphertext. BE has
been applied to content subscription and digital rights management in subsequent decades.
The first fully collusion resistant scheme [61] was presented in 2005, where constant-size
ciphertexts and private keys are obtained, but the size of public keys is still proportional
to the maximal number of receivers. In 2007, the first Identity-Based Broadcast Encryp-
tion (IBBE) scheme [100] with constant-size ciphertexts and private keys was proposed
by Delerablee, which is against adaptive Chosen Ciphertext Attacks (CCA) in the random
oracle model. In 2009, Gentry and Waters first achieved adaptive security in the stan-
dard model for IBBE [101]. In 2015, Kim et al. presented an adaptively CCA-secure
IBBE scheme in the standard model [105] with a dual-system encryption technique. Re-
searchers also worked on BE with special features such as user revocation [61, 106, 107]
and constant-size ciphertexts and private keys [100, 101]. Anonymity is one of the desir-
able properties. With the digitization of each piece of information, identity is undoubtedly
a kind of sensitive information. Conventional BE takes a receiver set as a part of cipher-
text, exposing the identities of intended receivers. Anonymous BE schemes [108–112]
were then constructed to tackle this problem.

Searchable Encryption [1] is divided into two categories, Searchable Symmetric En-
cryption (SSE) [5, 7, 9, 10, 12, 13] and PEKS [2]. Due to its intrinsic public-key char-
acteristic, PEKS helps address the dilemma of key management and key abuse in the
symmetric-key setting. However, PEKS encountered great challenges from KGA [3, 4]
where adversaries can manufacture whatever ciphertexts of keywords of interest to test
with a real trapdoor, learning the keywords being searched. One of the solutions to resist-
ing such attacks is PAEKS [35]. PAEKS takes the sender’s secret key as input in addition
to the receiver’s public key to ensure that no one else can forge a ciphertext for the test.
There are also conceptions or applications such as certificateless PAEKS [36] derived
from PAEKS. Another solution is to utilize the server-aided technique [34, 77], in which
an assistant server is deployed to help resist KGA.

The idea of combining PEKS with BE is not new. In 2014, Ali et al. constructed a

5.1. INTRODUCTION 83

broadcast searchable encryption scheme [102] converted from Boneh et al.’s Broadcast
Encryption [113]. Unfortunately, this scheme [102] is insecure against KGA. KGA can
be launched on their scheme as follows. Anyone is able to manufacture a searchable
ciphertext to test either their real searchable ciphertext or their real trapdoor, thereby un-
folding the underlying keyword. In addition, it sounds quite unreasonable that both their
trapdoor generation and test algorithm take the broadcast receiver set as input, which
means anonymity is never guaranteed. In 2016, Kiayias et al. presented a broadcast key-
word search scheme [103]. Unfortunately, the security models regarding anonymity were
still not formalized in their work, and their presented scheme’s test algorithm still takes
as input the set of intended receiver identities. In 2019, Jiang et al. introduced a prim-
itive called Identity-based Broadcast Encryption with Keyword Search (IBEKS) [104],
combining PEKS with identity-based broadcast encryption to enable multiple intended
receivers to search and decrypt the same ciphertext. Its searchable ciphertext genera-
tion takes the sender’s secret key as input, preventing adversaries from manufacturing
ciphertext to test real trapdoors. However, their trapdoor size and trapdoor computational
complexity are linear to the number of the maximal number of receivers in the system.
Moreover, the test algorithm requires the broadcast receiver set as input, which means the
server needs to recognize all intended receivers before testing. A universal keyword set is
chosen and predetermined in the setup algorithm, and keywords out of the set cannot be
processed. Their security is proved on the intractability of Multi-Sequence of Exponents
Decisional Diffie-Hellman (MSE-DDH) problem. In conclusion, to the best of our knowl-
edge, there has been no existing work addressed all the above problems simultaneously,
including anonymity regarding both searchable ciphertext and trapdoor, defending KGA,
and with universal keyword set scalability.

5.1.2 Our Contribution

Motivated by the broadcast scenario mentioned earlier and the remaining unsolved chal-
lenges, we incorporate PAEKS with BE to present a new primitive called broadcast au-
thenticated encryption with keyword search (or BAEKS, for short), followed by a con-
crete scheme. In particular, we provide a formal and comprehensive treatment for user
anonymity regarding both searchable ciphertext and trapdoor for BAEKS. Fig. 5.1 out-
lines the system architecture. Below we give a high-level description of our construction
idea.

To prevent Keyword Guessing Attack, the sender’s secret key is taken as an input of
the encryption algorithm to ensure parties other than the sender cannot manufacture the
ciphertext. Assume there are t intended receivers, the sender processes the sender’s secret
key, each intended receiver’s public key, and the keyword to obtain a secret value Vi,
and utilizes these t secret values as roots to construct a t-degree polynomial. Then the

5.2. FORMAL DEFINITION AND SECURITY MODELS 84

sender hides a randomly chosen secret element k in the polynomial and then includes
the coefficients in the ciphertext. The remaining ciphertext components are calculated
based on k. On the receiver side, the trapdoor generation algorithm takes the sender’s
public key, the receiver’s secret key and the keyword of interest as the input and will get a
trapdoor corresponding to the secret value Vi. On the cloud server side, the test algorithm
takes the trapdoor and coefficients in the ciphertext to recover a value k′. Note that if the
keyword is identical in the ciphertext and the trapdoor, then k′ = k. With the help of k, the
server can do further tests on the remaining ciphertext components to confirm whether the
current ciphertext matches the trapdoor. However, the above construction has a security
issue: two keyword ciphertexts can be linked if they have the same keyword and common
receivers. To address the problem, we further randomize the polynomial in generating a
keyword ciphertext to break the linkage.

Based on our above construction idea, we can see that neither the receiver nor the
server requires the knowledge of the intended receiver set in order to generate a trapdoor
or perform a test, thus not impeding receiver anonymity, i.e., the current receiver does not
need to recognize other intended receivers in order to search, and given the ciphertext, the
server learns nothing about the intended receivers. Besides that the searchable ciphertext
hides target receivers’ identities (anonymity), a by-product is that the trapdoor hides the
recipient identity in search (trapdoor anonymity), i.e., the server and other eavesdroppers
cannot tell the recipient identity by observing the trapdoor, though they may be granted
access to searchable ciphertexts (simulated by the ciphertext queries in security model). In
addition, no predetermined universal keyword set is demanded, and any keyword could be
encrypted or searched, thereby maximizing the system scalability and flexibility. More-
over, the size and computational cost of public parameter and trapdoor are constant, which
is more practical for the multi-receiver setting where a large number of trapdoors would
be generated by different receivers.

5.1.3 Chapter Organization

In Section 5.2, we present the formal definition and security models of BAEKS. Then we
propose a BAEKS scheme in Section 5.3 and prove its security in Section 5.4. After that,
performance evaluation is included in Section 5.5. Finally, the chapter summary is given
in Section 5.6.

5.2 Formal Definition and Security Models

In this section, we first present the syntax and five algorithms of BAEKS. Then after an-
alyzing the security requirements in terms of trapdoor privacy, ciphertext indistinguisha-
bility, anonymity, and trapdoor anonymity, the formal security definitions of BAEKS are

5.2. FORMAL DEFINITION AND SECURITY MODELS 85

Figure 5.1: BAEKS System Model

KGC denotes the key generation center; CS denotes the cloud server; Si denotes a sender (data
owner); R j denotes a receiver (data user). After setting up the system parameters, KGC distributes
a unique key pair (pk,sk) to each entity (sender or receiver). A sender S processes the underlying
keyword w′ of its document to generate the searchable ciphertext C, using its own secret key
and all target receivers’ public keys, and then uploads the document together with C to the cloud
server. Any receiver R can compute the trapdoor Tw for the keyword w of interest with its own
secret key and a sender’s public key, and send Tw to the cloud server for a search query. The
cloud server can test on C and Tw without knowing the receiver’s identity, and the corresponding
document will be returned if all the following hold: their underlying keywords are the same
(w′ = w), the trapdoor Tw is for querying the content from the sender S rather than other senders,
and the receiver R is one of the target receivers of the searchable ciphertext C.

5.2. FORMAL DEFINITION AND SECURITY MODELS 86

presented.

5.2.1 Formal Definition

• Setup(1λ)→ params: Taking as input the security parameter λ , it generates the
public parameters params.

• KeyGen(params)→ (pk,sk): Taking as input the public parameter params, it gen-
erates a public/secret key pair (pk,sk) of an entity.

• BAEKS(w,skS,R)→C: Taking as input the keyword w, the sender’s secret key skS

and all intended receivers’ public keys R = {pkR1, pkR2, · · · , pkRt}, it generates the
searchable ciphertext C.

• Trapdoor(w, pkS,skRi)→ Tw: Taking as input the keyword w, the sender’s public
key pkS and the receiver’s secret key skRi , it generates the trapdoor Tw.

• Test(Tw,C)→ 1/0: Taking as input a trapdoor Tw and a ciphertext C, it outputs 1
or 0.

Correctness. For any sender’s keys (pkS,skS)← KeyGen(param) and any receiver’ keys
(pkRi,skRi)← KeyGen(param) for Ri ∈R, given a trapdoor Tw← Trapdoor(w, pkS,skRi)

generated by the receiver Ri of the broadcast set R and a searchable ciphertext C ←
BAEKS(w,skS,R) generated by the sender S, the testing result must be 1← Test(Tw,C).

5.2.2 Security Models

Trapdoor Privacy

From intuition, the trapdoor should not reveal any sensitive information about its under-
lying keyword. Thus, we formulate a keyword distinguishing game to depict the security
requirement for trapdoors given two trapdoors for distinct keywords from the same sender
to the same receiver. To be noted, querying ciphertexts from the challenge sender and any
receiver set containing the challenge receiver is prohibited to avoid trivial testing attacks.

1. Setup. Given the security parameter λ , the challenger C sends params← Setup(1λ),
the challenge sender’s public key pkS and the challenge receiver’s public key pkR

to the adversary A .

2. Phase1. A is allowed to adaptively issue the following queries.

• Hash Queries. The challenger C responds to hash queries with random num-
bers.

5.2. FORMAL DEFINITION AND SECURITY MODELS 87

• CiphertextQueries. Given a keyword w, a receiver set’s public keys R̃ = { ˜pkR1,

˜pkR2, · · · , ˜pkRt}, it computes the ciphertext C with respect to skS and R̃, and
returns it to A .

• Trapdoor Queries. Given a keyword w, a sender’s public key ˜pkS, it computes
the trapdoor Tw with respect to skR and ˜pkS, and returns it to A .

3. Challenge. A chooses two keywords w0,w1 such that (w0,R) and (w1,R) have
not been queried for ciphertexts where pkR ∈R, and (w0, pkS) and (w1, pkS) have
not been queried for trapdoors, and sends them to C . C randomly chooses a bit
b ∈ {0,1}, computes Twb ← Trapdoor(wb, pkS,skR) and returns it to A .

4. Phase2. A continues to issue queries as above, with restriction that neither (w0,R)

nor (w1,R) can be queried for ciphertext where pkR ∈R, and neither (w0, pkS) nor
(w1, pkS) can be queried for trapdoor.

5. Guess. A outputs a bit b′ ∈ {0,1}. It wins the game if b′ = b.

We define the adversary A ’s advantage of successfully distinguishing the trapdoors of
BAEKS as

AdvT
A ,BAEKS(λ) = |Pr[b′ = b]− 1

2
|.

Ciphertext Indistinguishability

Ciphertexts are required not to reveal any sensitive information about its underlying key-
word as well. Thus, a keyword distinguishing game to set forth the security requirement
for ciphertexts given two ciphertexts for different keywords from the same sender to the
same broadcast receiver set. Here trapdoor queries from the challenge sender and any
receiver of the challenge broadcast set should be refused to avoid trivial testing attacks.

1. Setup. Given the security parameter λ , the challenger C sends params← Setup(1λ),
the challenge sender’s public key pkS and the challenge receiver set’s public keys
R = {pkR1, pkR2, · · · , pkRt} to the adversary A .

2. Phase1. A is allowed to adaptively issue the following queries.

• Hash Queries. The challenger C responds to hash queries with random num-
bers.

• Ciphertext Queries. Given a keyword w, a receiver set’s public keys R̃ =

{ ˜pkR1,
˜pkR2 , · · · , ˜pkRt}, it computes the ciphertext C with respect to skS and

R̃, returns it to A .

• Trapdoor Queries. Given a keyword w, a sender’s public key ˜pkS, a chosen
public key pkRi ∈R, it computes the trapdoor Tw with respect to skRi and ˜pkS,
returns it to A .

5.2. FORMAL DEFINITION AND SECURITY MODELS 88

3. Challenge. A chooses two keywords w0,w1 such that (w0, pkS) and (w1, pkS) have
not been queried for trapdoors, and sends them to C . C randomly chooses a bit
b ∈ {0,1}, computes Cb← BAEKS(wb,skS,R) and returns it to A .

4. Phase2.A continues to issue queries as above, with restriction that neither (w0, pkS)

nor (w1, pkS) can be queried for trapdoor.

5. Guess. A outputs a bit b′ ∈ {0,1}. It wins the game if b′ = b.

We define the adversary A ’s advantage of successfully distinguishing the ciphertexts of
BAEKS as

AdvC
A ,BAEKS(λ) = |Pr[b′ = b]− 1

2
|.

Anonymity

Similar to anonymous broadcast encryption, ciphertexts are required not to reveal any sen-
sitive information about their intended receivers. A broadcast receiver set distinguishing
game describes the security requirement, in which adversary is to tell under which one of
the two public key sets the challenge ciphertext for the identical keyword from the same
sender is created. Here the two sets contain public keys of only one distinct receiver’s
public key pkR0/pkR1 and t− 1 identical receivers’ public keys. Trapdoor queries from
the challenge sender and any of the two distinct receivers should not be responded to to
avoid trivial testing attacks.

1. Setup. Given the security parameter λ , the challenger C sends params← Setup(1λ),
the challenge sender’s public key pkS and two different receiver set’s public keys
R0 = {pkR0 , pkR2, · · · , pkRt},R1 = {pkR1 , pkR2, · · · , pkRt} of the same size to the
adversary A .

2. Phase1. A is allowed to adaptively issue the following queries.

• Hash Queries. The challenger C responds to hash queries with random num-
bers.

• Ciphertext Queries. Given a keyword w, a receiver set’s public keys R̃ =

{ ˜pkR1,
˜pkR2, · · · , ˜pkRt}, it computes the ciphertext C with respect to skS and

R̃, returns it to A .

• Trapdoor Queries. Given a keyword w, a sender’s public key ˜pkS, a chosen
public key from {pkR0, pkR1}, it computes the trapdoor Tw with respect to skR0

or skR1 , and ˜pkS, returns it to A .

3. Challenge. A chooses a keyword w∗ such that (w∗, pkS) has not been queried for
trapdoors, and sends them to C . C randomly chooses a bit b ∈ {0,1}, computes
Cb← BAEKS(w∗,skS,Rb) and returns it to A .

5.2. FORMAL DEFINITION AND SECURITY MODELS 89

4. Phase2. A continues to issue queries as above, with restriction that (w∗, pkS) can-
not be queried for trapdoor.

5. Guess. A outputs a bit b′ ∈ {0,1}. It wins the game if b′ = b.

We define the adversary A ’s advantage of successfully breaking the anonymity of BAEKS
as

AdvANO
A ,BAEKS(λ) = |Pr[b′ = b]− 1

2
|.

Trapdoor Anonymity

While anonymity means that searchable ciphertext should not reveal intended recipients’
identity, trapdoor anonymity implies that the trapdoor should not disclose any sensitive
identity information about their maker, i.e., the receiver who is searching at present.
Specifically, given two candidate receivers, the trapdoor fails to link the query to the user
identity, though testing on the current ciphertext can be utilized. A distinguishing game
describes the security requirement for ciphertexts given trapdoor for the identical keyword
from the same sender to two distinct receivers. Of course, it should be restricted that both
challenge receivers have the same inclusion relationship with the intended receiver set
of the queried ciphertext C for the challenge keyword w∗, i.e., either pkR0, pkR1 ∈ R̃ or
pkR0, pkR1 /∈ R̃ in order to exclude the trivial testing attacks, i.e., distinguishing between
the two receivers by running Test(Tw∗,b,C)→ 1/0.

1. Setup. Given the security parameter λ , the challenger C sends params← Setup(1λ),
the challenge sender’s public key pkS and two different receivers’ public keys pkR0 ,
pkR1 to the adversary A .

2. Phase1. A is allowed to adaptively issue the following queries.

• Hash Queries. The challenger C responds to hash queries with random num-
bers.

• Ciphertext Queries. Given a keyword w, a receiver set’s public keys R̃ =

{ ˜pkR1,
˜pkR2 , · · · , ˜pkRt}, it computes the ciphertext C with respect to skS and

R̃, returns it to A .

• Trapdoor Queries. Given a keyword w, a sender’s public key ˜pkS, a chosen
public key from {pkR0 , pkR1}, it computes the trapdoor Tw with respect to skR0

or skR1 , and ˜pkS, returns it to A .

3. Challenge. A chooses a keyword w∗ such that (w∗, pkS) has not been queried for
trapdoors, and (w∗,R) has not been queried for ciphertexts where R0,R1 have dif-
ferent inclusion relationships with R, and sends it to C . C randomly chooses a bit
b ∈ {0,1}, computes Tw∗,b← BAEKS(w∗,skS,Rb) and returns it to A .

5.3. THE PROPOSED CONSTRUCTION 90

4. Phase2.A continues to issue queries as above, with restriction that neither (w∗, pkS)

can be queried for trapdoor, nor (w∗,R) can be queried for ciphertexts where R0,R1

have different inclusion relationships with R.

5. Guess. A outputs a bit b′ ∈ {0,1}. It wins the game if b′ = b.

We define the adversary A ’s advantage of successfully breaking the anonymity of BAEKS
as

AdvT−ANO
A ,BAEKS(λ) = |Pr[b′ = b]− 1

2
|.

5.3 The Proposed Construction

In this section, a concrete BAEKS scheme is proposed which has all the desired features
as our expectation, followed by the correctness analysis.

5.3.1 Detailed Construction

• Setup(1λ)→ param: Taking as input the security parameter λ , it generates a bi-
linear map system (p,G,GT ,e), where p is a prime s.t. |p| = λ , G and GT are
two cyclic groups with the same order p, e is a bilinear map e : G×G→ GT . It
picks random generators g,u,v,z ∈G, hash functions H1 : {0,1}∗→G,H2 : GT →
Zp,H3 : {0,1}∗→Zp. The public parameters are param= {p,G,GT ,e,g,u,v,z,H1,

H2,H3}.

• KeyGen(param)→ (pk,sk): Taking as input the public parameter params, it gen-
erates a random element x∈Z∗p, sets sk = x, pk = gx and outputs a public/secret key
pair (pk,sk).

• BAEKS(w,skS,R)→C: Taking as input the keyword w, the sender’s secret key skS

and all intended receivers’ public keys R = {pkR1, pkR2, · · · , pkRt}, it chooses ran-
dom elements τ,k,y ∈ Z∗p. For i = 1,2, · · · , t, computes Vi = H2(e(H1(w)skS , pkRi))

and f (x) = (x−y)∏i∈R(x−Vi)+k = ∑
t
j=0 a jx j +xt+1(mod p), where a j is the co-

efficient corresponding to x j. It computes A j = ga j for j = 0,1, · · · , t, C0 = gk,h =

H3(C0,A0,A1, · · · ,At),C1 = (uhvτz)k and sets C = (τ,C1,A0,A1, · · · ,At).

• Trapdoor(w, pkS,skRi)→ Tw: Taking as input the keyword w, the sender’s public
key pkS and the receiver’s secret key skRi , it computes Tw = H2(e(H1(w)skRi , pkS)).

• Test(Tw,C)→ 1/0: Taking as input a trapdoor Tw and a ciphertext C =(τ,C1,A0,A1,

· · · ,At), it computes C0 = ∏
t
j=0 AT j

w
j ·gT t+1

w ,h = H3(C0,A0,A1, · · · ,At). It outputs 1
if e(C1,g) = e(uhvτz,C0); and 0 otherwise.

5.4. SECURITY PROOF 91

5.3.2 Correctness

Assume a trapdoor Tw and a searchable ciphertext C = (τ,C1,A0,A1, · · · ,At) are given to
the server. Note that a trapdoor Tw generated by an intended receiver whose pkRi ∈R is
actually Vi that is used for constructing the searchable ciphertext:

Vi = e(H1(w)sks, pkRi) = e(H1(w)skRi , pkS) = Tw.

Then the server can recover the implied C′0 using Tw as follows:

C′0 =
t

∏
j=0

AT j
w

0 ·g
T t+1

w = g∑
t
j=0 a jT

j
w+T t+1

w = g f (Tw) = g f (Vi) = gk′.

Obviously, the server can verify the searchable ciphertext C is the target one for the trap-
door Tw if the following equation holds:

e(C1,g) = e((uhvτz)k,g) = e(uh′vτz,gk′) = e(uh′vτz,C′0)

where h′ = H3(C′0,A0,A1, · · · ,At).
Remark (Ciphertext Unlinkability).The random element y ∈ Z∗p randomizes the search-
able ciphertext C, specifically, the polynomial coefficients a0,a1, · · · ,at , or A0,A1, · · · ,At .
Even in the case that two ciphertexts are encrypted for the same receiver set R and the
same keyword w, such randomization ensures the unlinkability for the two searchable
ciphertexts.

5.4 Security Proof

In this section, we prove that our concrete scheme satisfies trapdoor privacy, ciphertext in-
distinguishability, anonymity and trapdoor anonymity in accordance with our formulated
security models.

5.4.1 Trapdoor Privacy

Theorem 7. If the adversary A wins the trapdoor privacy game with advantage εT , then

there exists a PPT adversary B which can solve the DBDH problem with the advantage

εDBDH ≥ εT ·
2

(qT +qC)e

where qT is the number of trapdoor queries, and qC is the number of ciphertext queries.

Proof. Assume that there is a PPT adversary A which breaks the Trapdoor Privacy of
our BAEKS scheme with a non-negligible advantage εC , then we can use it to construct

5.4. SECURITY PROOF 92

another PPT algorithm B to solve the DBDH problem.

• Setup. B takes as input a DBDH problem instance, i.e. (G,GT ,e, p,g,ga,gb,gc,Z),
where a,b,c are randomly chosen from Zp, and Z is either e(g,g)abc or a random
element of GT . Let β be a bit such that β = 0 if Z = e(g,g)abc, and β = 1 if Z is
random. B randomly chooses generators u,v,z∈R G, hash functions H1 : {0,1}∗→
G,H2 :GT →Zp,H3 : {0,1}∗→Zp and sets param=(p,G,GT ,e,g,u,v,z,H1,H2,H3).
B sets pkS = ga, pkR = gb, sends param and public keys to A .

• Phase1. A is allowed to adaptively issue the following queries.

– H1 Queries.B maintains a list L1 , which is initiated empty and contains tuples
〈w, ·, ·〉. Upon a query wl , if the tuple 〈wl,dl,h1,l〉 is already in L1, B returns
h1; otherwise, B randomly chooses dl ∈ Z∗q , tosses a coin γl such that Pr[γl =

0] = δ .

1. If γl = 0, computes h1,l = gc·dl ;

2. otherwise, computes h1,l = gdl .

B adds 〈wl,γl,dl,h1,l〉 to L1 and returns h1,l .

– H2 Queries.B maintains a list L2, which is initiated empty and contains tuples
〈α, ·〉. Upon a query α , if the tuple 〈α,h2〉 is already in L2, B returns h2;
otherwise, B randomly chooses h2 ∈ Z∗p, adds 〈α,h2〉 to L2 and returns h2.

– H3 Queries.B maintains a list L3, which is initiated empty and contains tuples
〈γ, ·〉. Upon a query γ , if the tuple 〈γ,h3〉 is already in L3, B returns h3;
otherwise, B randomly chooses h3 ∈ Z∗p, adds 〈γ,h3〉 to L3 and returns h3.

– Ciphertext Queries. Given a keyword wl , a receiver set’s public keys R̃ =

{ ˜pkR1,
˜pkR2, · · · , ˜pkRt}, B first looks up L1 to find the entry 〈wl,γl,dl,h1,l〉.

1. If γl = 0, aborts;

2. otherwise, for each ˜pkRi ∈ R̃, computes αi = e(ga, ˜pkRi)
dl ,

looks up L2 to find the entry 〈αi,h2,i〉. If there is no such entry, ran-
domly chooses h2,i ∈ Z∗p, adds 〈αi,h2,i〉 to L2, and sets Vi = h2,i. B ran-
domly picks τ,k,y ∈R Z∗p, computes f (x) = (x− y)∏i∈R̃(x−Vi)+ k =

∑
t
j=0 a jx j +xt+1(mod p), where a j is the coefficient corresponding to x j.

It computes A j = ga j for j = 0,1, · · · , t, C0 = gk,h = H3(C0, A0, A1, · · · ,
At),C1 = (uhvτz)k and sets C = (τ,C1,A0,A1, · · · ,At).

– Trapdoor Queries. Given a keyword wl , a sender’s public key ˜pkS, B first
looks up L1 to find the entry 〈wl,γl,dl,h1,l〉.

1. If γl = 0, aborts;

5.4. SECURITY PROOF 93

2. otherwise, computes α = e(gb, ˜pkS)
dl , looks up to L2 to find the entry

〈α,h2〉. If there is no such entry, randomly chooses h2 ∈ Z∗p, adds 〈α,h2〉
to L2, and returns Tw = h2.

• Challenge. A chooses two distinct keywords w0,w1 such that (w0,R) and (w1,R)

have not been queried for ciphertexts where pkR ∈R, and (w0, pkS) and (w1, pkS)

have not been queried for trapdoors, and sends them to B. B randomly chooses a
bit β ∈ {0,1}, looks up L1 to find the entries 〈w0,γ0,d0,h1,0〉 and 〈w1,γ1,d1,h1,1〉,

1. if γ0 = γ1 = 1, aborts;

2. otherwise, computes α = Zdβ , looks up to L2 to find the entry 〈α,h2〉 and
returns T ∗w = h2 to A .

• Phase2. A continues to issue queries as above, with restriction that neither (w0,R)

nor (w1,R) can be queried for ciphertext where pkR ∈R, and neither (w0, pkS) nor
(w1, pkS) can be queried for trapdoor.

• Guess. A outputs a bit β ′. If β ′ = β , B outputs 0, otherwise 1.

Here we use abt to denote the event that B aborts in the game. There are two cases in
which abt happens.

1. The event that γl = 0 in trapdoor and ciphertext queries. We denote it as abt1. The
probability that abt1 does not happen:

Pr[¬abt1] = (1−δ)qT+qC

2. The event that γ0 = γ1 = 1 in challenge. We denote it as abt2. The probability that
abt2 does not happen:

Pr[¬abt2] = 1− (1−δ)2

Then the probability that B does not abort is:

Pr[¬abt] = Pr[¬abt1] ·Pr[¬abt2] = (1−δ)qT+qC · (1− (1−δ)2).

When δ = 1−
√

qT+qC
qT+qC+2 , the above probability takes the maximum, Pr[¬abt] approxi-

mately equals 2
(qT+qC)e

, which is non-negligible since qT ,qC are polynomials and e is the
natural logarithm base.

5.4. SECURITY PROOF 94

Thus, the probability that B solves the DBDH problem is

Pr[b′ = b] = Pr[b′ = b∧abt]+Pr[b′ = b∧¬abt]

= Pr[b′ = b|abt] ·Pr[abt]+Pr[b′ = b|¬abt] ·Pr[¬abt]

=
1
2
· (1−Pr[¬abt])+(εT +

1
2
) ·Pr[¬abt]

=
1
2
+ εT ·Pr[¬abt]

If εT and Pr[¬abt] are non-negligible, so is

εDBDH = |Pr[b′ = b]− 1
2
| ≥ εT ·

2
(qT +qC)e

.

5.4.2 Ciphertext Indistinguishability

Theorem 8. If the adversary A wins the ciphertext indistinguishability game with advan-

tage εC, then there exists a PPT adversary B which can solve the DBDH problem with

the advantage

εDBDH ≥ εC ·
2

(qT +qC)e

where qT is the number of trapdoor queries, and qC is the number of ciphertext queries.

Proof. Assume that there is a PPT adversary A which breaks the Trapdoor Privacy of
our BAEKS scheme with a non-negligible advantage εC, then we can use it to construct
another PPT algorithm B to solve the DBDH problem.

• Setup. Public parameter generation is same as Trapdoor Privacy game. B sets
pkS = ga, R = {pkR∗1, pkR∗2, · · · , pkR∗t }= {g

b·r∗1 ,gb·r∗2 , · · · ,gb·r∗t }where r∗i ∈R Z∗p, and
sends param and public keys to A .

• Phase1. A is allowed to adaptively issue the following queries.

– H1 Queries. same as Trapdoor Privacy game.

– H2 Queries. same as Trapdoor Privacy game.

– H3 Queries. same as Trapdoor Privacy game.

– Ciphertext Queries. same as Trapdoor Privacy game.

– Trapdoor Queries. Given a keyword wl , a sender’s public key ˜pkS, a chosen
public key pkR∗i ∈R, B first looks up L1 to find the entry 〈wl,γl,dl,h1,l〉.

1. If γl = 0, aborts;

5.4. SECURITY PROOF 95

2. otherwise, computes α = e(gb, ˜pkS)
r∗i ·dl , looks up to L2 to find the entry

〈α,h2〉. If there is no such entry, randomly chooses h2 ∈ Z∗p, adds 〈α,h2〉
to L2, and returns Tw = h2.

• Challenge.A chooses two distinct keywords w0,w1 such that (w0, pkS) and (w1, pkS)

have not been queried for trapdoors, and sends them to B. B randomly chooses a
bit β ∈ {0,1}, looks up L1 to find the entries 〈w0,γ0,d0,h1,0〉 and 〈w1,γ1,d1,h1,1〉,

1. if γ0 = γ1 = 1, aborts;

2. otherwise, for each pkR∗i ∈R computes αi = Zdβ ·r∗i , looks up L2 to find the en-
try 〈αi,h2,i〉 and sets Vi = h2,i. Randomly picks τ,k,y∈R Z∗p, computes f (x) =

(x−y)∏i∈R(x−Vi)+k =∑
t
j=0 a jx j+xt+1(mod p), where a j is the coefficient

corresponding to x j. It computes A j = ga j for j = 0,1, · · · , t, C0 = gk,h =

H3(C0,A0,A1, · · · ,At),C1 = (uhvτz)k and sets C = (τ,C1,A0,A1, · · · ,At).

• Phase2.A continues to issue queries as above, with restriction that neither (w0, pkS)

nor (w1, pkS) can be queried for trapdoor.

• Guess. A outputs a bit β ′. If β ′ = β , B outputs 0, otherwise 1.

Here we use abt to denote the event that B aborts in the game. There are two cases in
which abt happens.

1. The event that γl = 0 in trapdoor and ciphertext queries. We denote it as abt1. The
probability that abt1 does not happen:

Pr[¬abt1] = (1−δ)qT+qC

2. The event that γ0 = γ1 = 1 in challenge. We denote it as abt2. The probability that
abt2 does not happen:

Pr[¬abt2] = 1− (1−δ)2

Then the probability that B does not abort is:

Pr[¬abt] = Pr[¬abt1] ·Pr[¬abt2] = (1−δ)qT+qC · (1− (1−δ)2).

When δ = 1−
√

qT+qC
qT+qC+2 , the above probability takes the maximum, Pr[¬abt] approxi-

mately equals 2
(qT+qC)e

, which is non-negligible since qT ,qC are polynomials and e is the
natural logarithm base.

5.4. SECURITY PROOF 96

Thus, the probability that B solves the DBDH problem is

Pr[b′ = b] = Pr[b′ = b∧abt]+Pr[b′ = b∧¬abt]

= Pr[b′ = b|abt] ·Pr[abt]+Pr[b′ = b|¬abt] ·Pr[¬abt]

=
1
2
· (1−Pr[¬abt])+(εC +

1
2
) ·Pr[¬abt]

=
1
2
+ εC ·Pr[¬abt]

If εC and Pr[¬abt] are non-negligible, so is

εDBDH = |Pr[b′ = b]− 1
2
| ≥ εC ·

2
(qT +qC)e

.

5.4.3 Anonymity

Theorem 9. If the adversary A wins the anonymity game with advantage εANO, then

there exists a PPT adversary B which can solve the DBDH problem with the advantage

εDBDH ≥ εANO ·
1

(qT +qC +1)e

where qT is the number of trapdoor queries, and qC is the number of ciphertext queries.

Proof. Assume that there is a PPT adversary A which breaks the Trapdoor Privacy of
our BAEKS scheme with a non-negligible advantage εC, then we can use it to construct
another PPT algorithm B to solve the DBDH problem.

• Setup. Public parameter generation is same as Trapdoor Privacy game. B sets
pkS = ga, R0 = {pkR∗0, pkR2 , · · · , pkRt}= {gb·r∗0 ,gr2, · · · ,grt},R1 = {pkR∗1, pkR2, · · · ,
pkRt}= {gb·r∗1 ,gr2, · · · ,grt} where r∗0,r

∗
1,ri ∈R Z∗p for i = 2, · · · , t, and sends param

and public keys to A .

• Phase1. A is allowed to adaptively issue the following queries.

– H1 Queries. same as Trapdoor Privacy game.

– H2 Queries. same as Trapdoor Privacy game.

– H3 Queries. same as Trapdoor Privacy game.

– Ciphertext Queries. It is same as Trapdoor Privacy game.

– Trapdoor Queries. Given a keyword w, a sender’s public key ˜pkS, a cho-
sen public key pkR∗i ∈ {pkR∗0, pkR∗1}, B first looks up L1 to find the entry
〈wl,γl,dl,h1,l〉.

5.4. SECURITY PROOF 97

1. If γl = 0, aborts;

2. otherwise, computes α = e(gb, ˜pkS)
r∗i ·dl , looks up to L2 to find the entry

〈α,h2〉. If there is no such entry, randomly chooses h2 ∈ Z∗p, adds 〈α,h2〉
to L2, and returns Tw = h2.

• Challenge. A chooses a keyword w∗ such that (w∗, pkS) has not been queried for
trapdoors, and sends them to B. B randomly chooses a bit β ∈ {0,1}, looks up L1

to find the entries 〈w∗,γ∗,d∗,h∗1〉,

1. if γ∗ = 1, aborts;

2. otherwise, computes αβ = Zd∗·r∗
β and αi = e(ga,gc)d∗·ri for i = 2, · · · , t, looks

up L2 to find the entries 〈αβ ,h2,β 〉 and 〈αi,h2,i〉, sets Vβ = h2,β and Vi = h2,i.
Randomly picks τ,k,y ∈R Z∗p, computes f (x) = (x− y)∏i∈Rβ

(x−Vi)+ k =

∑
t
j=0 a jx j + xt+1(mod p), where a j is the coefficient corresponding to x j. It

computes A j = ga j for j = 0,1, · · · , t, C0 = gk,h=H3(C0,A0,A1, · · · ,At),C1 =

(uhvτz)k and sets C = (τ,C1,A0,A1, · · · ,At).

• Phase2. A continues to issue queries as above, with restriction that (w∗, pkS) can-
not be queried for trapdoor.

• Guess. A outputs a bit β ′. If β ′ = β , B outputs 0, otherwise 1.

Here we use abt to denote the event that B aborts in the game. There are two cases in
which abt happens.

1. The event that γl = 0 in trapdoor and ciphertext queries. We denote it as abt1. The
probability that abt1 does not happen:

Pr[¬abt1] = (1−δ)qT+qC

2. The event that γ∗ = 1 in challenge. We denote it as abt2. The probability that abt2

does not happen:
Pr[¬abt2] = δ

Then the probability that B does not abort is:

Pr[¬abt] = Pr[¬abt1] ·Pr[¬abt2] = (1−δ)qT+qC ·δ .

When δ = 1
qT+qC+1 , the above probability takes the maximum, Pr[¬abt] approximately

equals 1
(qT+qC+1)e , which is non-negligible since qT ,qC are polynomials and e is the nat-

ural logarithm base.

5.4. SECURITY PROOF 98

Thus, the probability that B solves the DBDH problem is

Pr[b′ = b] = Pr[b′ = b∧abt]+Pr[b′ = b∧¬abt]

= Pr[b′ = b|abt] ·Pr[abt]+Pr[b′ = b|¬abt] ·Pr[¬abt]

=
1
2
· (1−Pr[¬abt])+(εANO +

1
2
) ·Pr[¬abt]

=
1
2
+ εANO ·Pr[¬abt]

If εANO and Pr[¬abt] are non-negligible, so is

εDBDH = |Pr[b′ = b]− 1
2
| ≥ εANO ·

1
(qT +qC +1)e

.

5.4.4 Trapdoor Anonymity

Theorem 10. If the adversary A wins the trapdoor anonymity game with advantage

εANO, then there exists a PPT adversary B which can solve the DBDH problem with the

advantage

εDBDH ≥ εT−ANO ·
1

(qT +qC +1)e

where qT is the number of trapdoor queries, and qC is the number of ciphertext queries.

Proof. Assume that there is a PPT adversary A which breaks the Trapdoor Privacy of
our BAEKS scheme with a non-negligible advantage εC, then we can use it to construct
another PPT algorithm B to solve the DBDH problem.

• Setup. Public parameter generation is same as Trapdoor Privacy game. B sets
pkS = ga, pkR0 = gb·r∗0 , pkR1 = gb·r∗1 where r∗0,r

∗
1 ∈R Z∗p, and sends param and public

keys to A .

• Phase1. A is allowed to adaptively issue the following queries.

– H1 Queries. same as Trapdoor Privacy game.

– H2 Queries. same as Trapdoor Privacy game.

– H3 Queries. same as Trapdoor Privacy game.

– Ciphertext Queries. It is the same as the Trapdoor Privacy game.

– Trapdoor Queries. Given a keyword w, a sender’s public key ˜pkS, a cho-
sen public key pkR∗i ∈ {pkR∗0, pkR∗1}, B first looks up L1 to find the entry
〈wl,γl,dl,h1,l〉.

5.4. SECURITY PROOF 99

1. If γl = 0, aborts;

2. otherwise, computes α = e(gb, ˜pkS)
r∗i ·dl where i ∈ {0,1}, looks up to L2

to find the entry 〈α,h2〉. If there is no such entry, randomly chooses
h2 ∈ Z∗p, adds 〈α,h2〉 to L2, and returns Tw = h2.

• Challenge. A chooses a keyword w∗ such that (w∗, pkS) has not been queried for
trapdoors, and (w∗,R) has not been queried for ciphertexts where R0,R1 have dif-
ferent inclusion relationships with R, and sends it to B. B randomly chooses a bit
β ∈ {0,1}, looks up L1 to find the entries 〈w∗,γ∗,d∗,h∗1〉,

1. if γ∗ = 1, aborts;

2. otherwise, computes αβ = Zd∗·r∗
β , looks up L2 to find the entries 〈αβ ,h2,β 〉,

sets T ∗w,β = h2,β .

• Phase2.A continues to issue queries as above, with restriction that neither (w∗, pkS)

can be queried for trapdoor and nor (w∗,R) can be queried for ciphertexts where
R0,R1 have different inclusion relationships with R.

• Guess. A outputs a bit β ′. If β ′ = β , B outputs 0, otherwise 1.

Here we use abt to denote the event that B aborts in the game. There are two cases in
which abt happens.

1. The event that γl = 0 in trapdoor and ciphertext queries. We denote it as abt1. The
probability that abt1 does not happen:

Pr[¬abt1] = (1−δ)qT+qC

2. The event that γ∗ = 1 in challenge. We denote it as abt2. The probability that abt2

does not happen:
Pr[¬abt2] = δ

Then the probability that B does not abort is:

Pr[¬abt] = Pr[¬abt1] ·Pr[¬abt2] = (1−δ)qT+qC ·δ .

When δ = 1
qT+qC+1 , the above probability takes the maximum, Pr[¬abt] approximately

equals 1
(qT+qC+1)e , which is non-negligible since qT ,qC are polynomials and e is the nat-

ural logarithm base.

5.5. PERFORMANCE EVALUATION 100

Table 5.1: Functionality Comparison between [104] and Ours

KGA
Resistance

Anonymity Universal Keyword
Set Scalability

Assumption

[104] X × × MSE-DDH
Ours X X X DBDH

Table 5.2: Computation Cost Comparison

Encrypt Trapdoor Test
[104] (2n+4)Ge (2n+2)Ge+nGp 2tGe+3Gp
Ours (2t +5)Ge+ tGp Ge+Gp (t +4)Ge+2Gp

Thus, the probability that B solves the DBDH problem is

Pr[b′ = b] = Pr[b′ = b∧abt]+Pr[b′ = b∧¬abt]

= Pr[b′ = b|abt] ·Pr[abt]+Pr[b′ = b|¬abt] ·Pr[¬abt]

=
1
2
· (1−Pr[¬abt])+(εT−ANO +

1
2
) ·Pr[¬abt]

=
1
2
+ εT−ANO ·Pr[¬abt]

If εT−ANO and Pr[¬abt] are non-negligible, so is

εDBDH = |Pr[b′ = b]− 1
2
| ≥ εT−ANO ·

1
(qT +qC +1)e

.

5.5 Performance Evaluation

To the best of our knowledge, the IBEKS of [104] is the only existing multi-receiver
keyword search scheme with KGA resistance before this work. A detailed functional-
ity comparison between IBEKS [104] and our BAEKS is given in Table 5.1. Table 5.2
and Table 5.3 provide comparisons of computation cost and communication overhead.
Xmeans “satisfy”, × refers to “not satisfy”. n denotes the maximal number of receivers
in the system, t denotes the number of intended broadcast receivers and l denotes the num-
ber of keywords of the universal keyword set. |Zp| refers to the element size of field Zp,

Table 5.3: Communication Complexity Comparison

Public Parameter Size Secret Key
Size

Trapdoor Size Ciphertext Size

[104] ((2n+1)+ l(n+2))|G| |Zp|+2|G| (n+1)|G|+n|GT | 3|G|
Ours 4|G| |Zp| |Zp| |Zp|+(t +2)|G|

5.6. CHAPTER SUMMARY 101

|G| refers to the element bit-length of group G, and |GT | refers to the element bit-length
of group GT . Ge refers to exponentiation, Gp refers to pairing.

As described in Table 5.1, both [104] and our scheme takes the sender’s secret key as
input to authenticate the keyword when encrypting. Hence they are immune to KGA. In
terms of anonymity, [104] takes all the broadcast receiver identity information as the input
of the test algorithm, while ours needs no such input and is proven to ensure anonymity
as well as trapdoor anonymity. The universal keyword set is predetermined in the setup
algorithm, and keywords out of the universal set cannot be encrypted and searched in
[104], while there is no keyword limitation when encrypting or searching in ours. [104] is
proved secure based on MSE-DDH, while our scheme is proved secure based on a simple
and standard assumption DBDH.

Since calculation other than exponentiation and pairing is far less time-consuming, we
merely evaluate and analyze the complexity of exponentiation and pairing. The computa-
tional complexity of [104]’s encryption is linear to the number of the maximal number of
receivers O(n), so is that of their trapdoor generation. In contrast, our encryption’s com-
putational complexity is only proportional to the number of intended broadcast receivers
O(t), which is no greater than the maximal number of receivers. Our trapdoor generation
complexity is constant O(1). In the comparison of test computation, even though both
schemes’ cost is linear to the number of intended broadcast receivers O(t), our scheme’s
actual cost is less than [104]. Details can be found in Table 5.2.

According to Table 5.3, in spite of the ciphertext size of [104] is constant O(1) and
smaller than ours O(t), our performance on all the remaining sizes (public parameter size,
secret key size, and trapdoor size) is better than theirs. Their public parameter size is not
only linear to the maximal number of receivers in the system n but also proportional to the
number of the universal keyword set size l, while ours is constant. Both schemes’ secret
key size is constant, but our specific complexity is smaller. Their trapdoor size grows with
the number of the maximal number of receivers n, while ours remains unchanged.

In short, our scheme outperforms [104] on functionality, computation cost and commu-
nication complexity.

5.6 Chapter Summary

In this chapter, we first introduced a cryptographic primitive called Broadcast Authenti-
cated Encryption with Keyword Search that engages in authenticated keyword search in
broadcast mode. The subsequent detailed scheme elegantly avoids the trapdoor size in-
creasing with the number of broadcast receivers, requires no universal keyword set and
is proved secure based on a simple and standard assumption. Moreover, its desirable
properties, i.e., anonymity and trapdoor anonymity, surpass the performance of existing
constructions. Therefore, it accommodates the demand for multi-user access and achieves

5.6. CHAPTER SUMMARY 102

competitive computational complexity and comprehensive security.

Chapter 6

Privacy-Preserving Searchable
Encryption for Distributed Systems

In this chapter, to meet the multi-writer/multi-user demand of large-scale cloud appli-
cations and find a privacy-preserving keyword search solution suitable for distributed
systems, we first formalize a primitive named Searchable Encryption based on Efficient
Privacy-preserving Outsourced calculation framework with Multiple keys (SE-EPOM)
and consider corresponding security requirements. Then a concrete SE-EPOM scheme
suitable for distributed systems is then presented and claimed secure under simulation-
based proof. Finally, we compare our scheme with existing works. Parts of this work
appeared in [114].

6.1 Introduction

Since the emergence of cloud computing, cloud storage has become one of the most pop-
ular and essential cloud services for both industrial and personal users due to its appealing
advantages in comparison to traditional data storage. According to the forecast from the
statistics portal website statista, the data center storage capacity worldwide will stand at
2,300 exabytes by 2021 [80]. With such rapid growth in cloud storage, data security and
privacy are indispensable considerations that must be well-addressed to avoid monetary
loss or damage of reputation due to cloud data leaks. Hence, it is natural to apply crypto-
graphic approaches such as data encryption mechanisms to ensure the privacy of sensitive
information stored in the cloud. Nevertheless, such a straightforward privacy protection
mechanism does not work for cloud storage facilities with considerable capacity since it
disallows the cloud server to perform a quick search over the stored data based on the user
request. To resolve this problem, searchable encryption schemes have been introduced in
the literature.

In the seminal work by Boneh et al. [2], the notion of Public-key Encryption with

103

6.1. INTRODUCTION 104

Keyword Search (PEKS) was introduced. In a PEKS scheme, it is assumed that there are
three entities: a data owner (or writer), a data user (or reader) and a storage server. To
share data with the user via the storage server, the owner first extracts a keyword from
the data and then generates the encryption of the keyword (called a searchable ciphertext)
with the intended user’s public key. The actual data, which can be encrypted separately,
is submitted together with its searchable ciphertext to the server. Then only the intended
user can generate a search token (a.k.a. trapdoor) based on his/her private key and a key-
word of interest and then passes the token to the server, who will test whether the trapdoor
matches a searchable ciphertext and inform the search result to the user. In this model, if
the owner wants to share the same data with different users, it needs to repeat the above
operation and generate multiple searchable ciphertexts, which is not practical or scalable
for distributed environments. For instance, if an administrative staff of a large corpo-
ration with ten thousand employees uploads a regulation document to their subscribed
cloud server, it would require ten thousand searchable ciphertexts to be generated, which
results in huge computation and storage overhead. Thus, an efficient searchable encryp-
tion scheme supporting multi-user access is more desirable for multi-user environments,
where a searchable ciphertext can match trapdoors from different authorized users.

Similar to the demand for multi-user search, multi-keyword search is another desir-
able feature of searchable encryption. For a data document with multiple keywords, the
plain PEKS scheme demands the same number of searchable ciphertexts be generated.
Moreover, given a set of trapdoors for multiple searching keywords, each trapdoor needs
to be repeatedly tested against all the searchable ciphertexts associated with a document.
Hence, a more efficient searchable encryption supporting multi-keyword search is also
desirable.

In a secure cloud storage supporting keyword search, security concerns involve not
only data privacy but search query privacy as well. Unfortunately, the PEKS scheme
by Boneh et al. [2] cannot guarantee the search query privacy against offline Keyword
Guessing Attacks (KGA) [3] since whether a trapdoor matches a searchable ciphertext can
be checked by anyone (including the cloud server). Thus, making searchable encryption
schemes immune to KGA is essential to protect user privacy.

Different solutions have been proposed to resist KGA attacks. There are generally two
means to resist KGA: to make the server unable to generate the searchable ciphertext by
itself and then launch KGA; and to disable public testing. The first method has led to
new cryptographic primitives such as public-key authenticated encryption with keyword
search (PAEKS) [35] where the private key of the data owner is used to generate and
authenticate the searchable ciphertext. However, PAEKS also takes the public key of the
data user as input to generate the searchable ciphertext, thereby failing to support multi-
user search.

The second approach, namely disabling public testing, inevitably requires a secret to be

6.1. INTRODUCTION 105

used in the testing algorithm. Since the testing is performed by the storage server, if the
secret is known to the server, then it can still perform KGA without being detected. There-
fore, a distributed testing mechanism becomes necessary to reduce the trust on a single
server. Specifically, the secret used for testing can be split into two (or multiple) shares,
one kept by the public cloud storage server and the other kept by an internal server of an
organization. The job of the internal server is to cooperate with the cloud storage server
in performing the searching operation while preventing the latter from performing KGA.
Such an approach can also be extended to a multi-internal-server setting. For example,
two internal servers residing in two departments/branches/clusters can be deployed so that
each internal server can handle search queries from one department. In such a distributed
environment, one important requirement is to allow multi-reader and multi-writer in data
uploading and retrieval. It means we should allow the encrypted document uploaded by a
data owner (or writer) to be searched by multiple data users (or readers), and vice versa.

Lastly, it is also important to achieve search pattern privacy, which means the cloud
storage server cannot identify the matching documents corresponding to a search query
(i.e., the cloud storage cannot tell whether two search queries produce the same or differ-
ent results, even if they are made by the same user).

6.1.1 Related Work

As PEKS attracts more attention from researchers in the past two decades, PEKS works
with distinct features and functionalities are designed. A number of schemes supporting
multi-keyword search were proposed in the literature [39–41]. However, these proposed
schemes can’t support multiple readers and writers simultaneously and do not achieve
satisfactory performance. Specifically, the trapdoor size and ciphertext size of [39, 41]
are linear to either the number of keywords contained in the processed document or the
number of keywords represented in the query. In addition, the public key size of [40] is
also in proportion to the set size. Thus, it is a challenge to design public key, trapdoor,
and ciphertext with short or constant size, reduce computational cost on trapdoor and
ciphertext and make the universal keyword set easy to expand.

According to the syntax of PEKS, to enable multi-reader access to the same message,
multiple searchable ciphertexts of the same keyword should be generated for different
readers, thereby multiplying the computation and storage overhead. Existing works sup-
porting multi-user access [5, 72, 115] more or less base their implementations on SSE
or broadcast encryption [60]. Their multi-user access refers to one writer and multiple
readers. Sun et al. utilized Ciphertext-Policy Attribute-Based Encryption (CP-ABE) in
combination with the cross-tag proposed in [11] to support the multi-reader access in
addition to the multi-keyword functionality [26]. In their scheme, a writer grants read-
ers secret keys, which means to access data outsourced by distinct writers, each reader

6.1. INTRODUCTION 106

should maintain a set of secret keys. Moreover, the number of stored searchable cipher-
texts is ∑w∈W |DB[w]|, where DB[w] represents all documents that include the keyword
w and W represents the universal keyword set. It means each document may accompany
multiple searchable ciphertexts, which could result in large storage overhead in a large
scale system. In 2019, Xu et al. proposed a lattice-based PEKS scheme transferred from
an anonymous identity-based (ID-based) scheme by replacing identities with keywords
[116]. Their construction is actually an ID-based PEKS which maps the reader’s identity
to a matrix so that the writer can use the reader’s identity to do encryption.

Keyword guessing attack (KGA) is a typical attack against PEKS [3, 4]. Since readers’
public keys are known, anyone can generate searchable ciphertexts for desired keywords
and perform the testing against a searching trapdoor. To resist KGA, cryptographic primi-
tives such as public-key authenticated encryption with keyword search (PAEKS) [35], and
Public-key Encryption with Fuzzy Keyword Search (PEFKS) [32] were proposed. KGA
undermines the search pattern privacy [5]. Hiding the search pattern and the access pattern
should also be taken into consideration when building searchable encryption schemes.
However, search pattern privacy is not preserved in many existing schemes [2, 10], where
the adversary can tell whether the underlying keywords of two queries are identical or
not. The access pattern [5] refers to the identifiers of matching documents, which is re-
vealed in most searchable encryption schemes [1, 5, 7, 34, 77]. Although Oblivious RAM
(ORAM) [117] is a potential solution to solve the problem, current ORAM constructions
are still too expensive to be practical.

6.1.2 Our Contribution

In this work, we present a new public-key searchable encryption scheme that can address
the above security, privacy and functionality issues. The system model is depicted as in
Fig. 6.1. Our scheme is suitable for a distributed environment that comprises multiple
data writers and readers and can deploy multiple designated servers to assist the public
cloud storage server in performing privacy-preserving keyword search over encrypted
data. Our solution is called Searchable Encryption, based on Efficient Privacy-preserving
Outsourced calculation framework with Multiple keys (SE-EPOM). The contributions of
our work are three-fold:

• We design a new Subset Decision Mechanism to determine whether one input set
is the subset of the other input set. The proposed mechanism provides the basis for
enabling multi-keyword search in a two-sever architecture. It may also be applied
to other applications that require private subset testing.

• We present an SE-EPOM scheme based on the above Subset Decision Mechanism.
The proposed scheme has the merits of supporting multi-user access, supporting

6.1. INTRODUCTION 107

Figure 6.1: System model.

multi-keyword search and achieving data and search query privacy. Specifically,
different from existing works, our multi-user access refers to accommodating both
multiple writers (or data owners) and multiple readers (or data users) simultane-
ously, which is important for adoption in a distributed system. Also, by applying the
multi-server architecture in the searching/testing operation, search queries are han-
dled with the assistance of multiple parallel servers to accelerate the response and
balance the workload. At the same time, Keyword Guessing Attack from the cloud
storage server is effectively resisted. Moreover, the trapdoor and the searchable ci-
phertext are delicately designed to achieve constant size. A comparison between
our scheme and the existing ones is presented in Table 6.2 .

• We evaluate the computational and communication overhead of our scheme and
two other keyword search schemes. The experimental results demonstrate that our
scheme is practical and more advantageous than the compared ones.

6.1.3 Chapter Organization

The syntax, correctness and security definitions of SE-EPOM are shown in Section 6.2.
The proposed scheme is described in details in Section 6.3. Security analysis is given in
Section 6.4 followed by the comparison of performance evaluation in Section 6.5. Finally
we conclude this chapter in Section 6.6.

6.2. FORMAL DEFINITION AND SECURITY MODELS 108

6.2 Formal Definition and Security Models

6.2.1 Formal Definition

A Searchable Encryption based on Efficient Privacy-preserving Outsourced calculation
framework with Multiple keys (SE-EPOM) is a protocol among a Key Generation Center
(KGC), a Cloud Platform (CP), multiple Internal Servers (IS’s), multiple Data Providers
(DPs), and multiple Request Users (RUs) as follows a.

KeyGen(1λ) → (PKDP, SKDP, PKRU , SKRU , SKCP,SKIS). Given the security parame-
ter λ , KGC generates the public parameter paramsb, the system secret key SK, the secret
key SKCP of CP, and the secret key SKIS of IS. Each DP generates its secret key SKDP and
its public key PKDP. Each RU generates its secret key SKRU and its public key PKRU .

Store(PKDP,WT)→ SC. Given DP’s public key PKDP and a document keyword set WT

to be processed, DP computes the searchable ciphertext SC.
Trapdoor(PKRU ,Wt)→ td. Given RU’s public key PKRU and the keyword set Wt of

interest, RU computes the trapdoor td.
Test(PKDP,SKCP,SKIS,PKRU ,SKRU , td,SC)→ 0/1. Given DP’s public key PKDP, CP’s

secret key SKCP, IS’s secret key SKIS, RU’s public key PKRU and secret key SKRU , RU’s
trapdoor td and a searchable ciphertext SC, CP and IS computes an intermediate value
which implies whether SC matches td. RU computes the test result from the intermediate
value and outputs 1 if Wt ⊆WT or 0 otherwise.
Correctness. For a searchable encryption scheme, the most important requirement is that
the returning result from the server must be what the client wants to obtain. To be detailed,
we formulate the correctness as follows:

• Test (PKDP,SKCP,SKIS,PKRU ,SKRU , td,SC)→ 1 if and only if Wt ⊆WT .

• Test (PKDP,SKCP,SKIS,PKRU ,SKRU , td,SC)→ 0 if and only if Wt 6⊆WT .

6.2.2 Security Models

In this section, we consider the security requirements for SE-EPOM in different aspects
and formalize corresponding security models.

Ciphertext Indistinguishability

When an encrypted document is uploaded to CP, DP should also attach the corresponding
encrypted searchable ciphertext. It is required that the encrypted searchable ciphertext
should not leak any information about its underlying keyword. It is worth noting that,

aUnless otherwise specified, our scheme refers to the architecture with only one IS, one DP, and one RU
for ease of description.

b params is the input of each algorithm and will not be included explicitly.

6.2. FORMAL DEFINITION AND SECURITY MODELS 109

even though CP can interact with IS to run Test, the final test result can only be accessed
by RU. Another consideration is that since the trapdoor is the encryption under RU’s
public key and the searchable ciphertext is the encryption under DP’s public key, the
adversary can generate trapdoors and searchable ciphertexts for any keyword set of its
choice by itself. Thus, in the game, there is no need for the challenger to respond to
trapdoor or ciphertext queries which usually simulate the chosen keyword attacks (CKA).
Due to the multi-keyword search feature of our system model, the distinguishing game
can be described as follows: the adversary chooses two distinct keyword sets of interest
and sends them to the challenger, the challenger randomly chooses one of them to derive
the corresponding encrypted searchable ciphertext and returns it; then the adversary tries
to guess which one is the underlying keyword set.

The indistinguishability game IND−SC depicting the security requirement is defined
as follows:

Setup. The challenger C runs KeyGen(1λ)→ (PKDP,SKDP, PKRU , SKRU , SKCP, SKIS),
sends (PKDP,PKRU , SKCP) to the adversary A and keeps (SKDP,SKRU ,SKIS) secret.

Challenge. The adversary A picks two different keyword sets W0,W1 ⊆W . A sends
W0,W1 to the challenger C . C picks b ∈R {0,1}, runs Store(PKDP,Wb)→ SCb and sends
SC to A .

Output. The adversary A gives its guess b′ and wins the game if b′ = b.

Definition 36. We say that a SE-EPOM satisfies indistinguishability in the above game,
if for any probabilistic polynomial-time (PPT) adversary A , the advantage

AdvIND−SC
SE−EPOM,A (λ) = |Pr[A b=0 wins]−Pr[A b=1 wins]| (1)

is negligible.

Trapdoor Privacy

As one of the security concerns in PEKS, trapdoor privacy refers to hiding information
about the underlying keyword of a trapdoor. For our system model, which considers a
multi-keyword search, it means CP cannot learn anything about the underlying keywords
from the trapdoor it receives from an RU. Similar to the previous security requirement,
trapdoor queries and ciphertext queries are not considered. However, we allow CP to
communicate with IS to perform the test operation and obtain the intermediate result.
The indistinguishability game can be described as follows: the adversary chooses two
distinct keyword sets of interest and sends them to the challenger, the challenger randomly
chooses one of them to derive the corresponding trapdoor and returns it; then the adversary
tries to guess which one is the underlying keyword set of the challenge trapdoor.

The indistinguishability game, i.e., Indistinguishability on Trapdoor (IND− T D) de-
picting the security requirement is defined as follows:

6.2. FORMAL DEFINITION AND SECURITY MODELS 110

Setup. The challenger C runs KeyGen(1λ)→ (PKDP,SKDP, PKRU , SKRU , SKCP, SKIS),
sends (PKDP,PKRU ,SKCP) to the adversary A and keeps (SKDP,SKRU ,SKIS) secret.

Challenge. The adversary A picks two different keyword sets W0,W1 ⊆W . A sends
W0,W1 to the challenger C . C picks b ∈R {0,1}, runs Trapdoor(PKRU ,Wb)→ tdb, sends
tdb to A .

Query. The adversary A is allowed to interact with the challenger C who acts as IS
according to the Test protocol.

Output. The adversary A gives its guess b′ and wins the game if b′ = b.

Definition 37. We say that a SE-EPOM satisfies indistinguishability in the above game,
if for any PPT adversary A , the advantage

AdvIND−T D
SE−EPOM,A (λ) = |Pr[A b=0 wins]−Pr[A b=1 wins]| (2)

is negligible.

Search Pattern Privacy

From intuition, when two search queries are launched by RU, CP should not be able to
tell whether these two queries have the same underlying keyword set. This kind of secu-
rity requirement is called search pattern privacy [118]. Due to the syntax of SE-EPOM,
it means given two trapdoors, the adversary should not tell whether their underlying key-
word sets are the same. Similar to the previous security requirement, trapdoor queries
and ciphertext queries are not considered. Inspired by the security definitions for PEKS
in [118], we formulate the Search Pattern Privacy (SPP) in the following game:

Setup. The challenger C runs KeyGen(1λ)→ (PKDP,SKDP, PKRU , SKRU , SKCP, SKIS),
sends (PKDP,PKRU ,SKCP) to the adversary A and keeps (SKDP,SKRU ,SKIS) secret.

Challenge. The adversary A picks two different keyword sets W0,W1 ⊆W . A sends
W0,W1 to the challenger C . C picks b ∈R {0,1}, runs Trapdoor(PKRU ,W0)→ td0 and
Trapdoor(PKRU ,Wb)→ tdb, sends td0, tdb to A .

Query. The adversary A is allowed to interact with the challenger C who acts as IS
according to the Test protocol.

Output. The adversary A gives its guess b′ and wins the game if b′ = b.

Definition 38. We say that a SE-EPOM satisfies search pattern privacy in the above SPP

game, if for any PPT adversary A , the advantage

AdvSPP
SE−EPOM,A (λ) = |Pr[A b=0 wins]−Pr[A b=1 wins]| (3)

is negligible.

6.2. FORMAL DEFINITION AND SECURITY MODELS 111

Relation between Trapdoor Privacy and Search Pattern Privacy

From our security definitions, the adversaries of the IND−T D game and the SPP game
are both aiming to collect information about the underlying keywords of a trapdoor.
Therefore, it is natural to explore the relationship between the two security requirements.

Theorem 11. A SE-EPOM scheme satisfies search pattern privacy if it satisfies trapdoor

privacy.

Proof. Assume that SE-EPOM does not satisfy search pattern privacy. We show that it
does not satisfy trapdoor privacy, either.

When SE-EPOM does not satisfy search pattern privacy, it means there exists an adver-
sary B which can win the SPP game with non-negligible probability. Suppose there is an
adversary A who runs B as a subroutine in the IND−T D game as follows:

Setup. The challenger C runs KeyGen(1λ)→ (PKDP,SKDP, PKRU , SKRU , SKCP, SKIS),
sends (PKDP,PKRU ,SKCP) to the adversary A and keeps (SKDP,SKRU ,SKIS) secret.

A sends (PKDP,PKRU ,SKCP) to the adversary B. Then the adversary A runs the
adversary B as a subroutine, B picks two different keyword sets W0,W1 ⊆W and sends
them to A .

Challenge. A sends W0, W1 to the challenger C . C picks b ∈R {0, 1}, runs Trapdoor

(PKRU ,Wb)→ tdb and sends tdb to A .
A runs Trapdoor(PKRU ,W0)→ td0 and sends td0, tdb to B. In B’s view, td0, tdb

correspond to the challenge td0, tdb in the SPP game. As the above assumption, B outputs
b′ such that b′ = b with non-negligible probability.

Query. B’s queries can be answered by A by directly forwarding the same queries to
C .

Output. The adversary A gives its guess b′ if and only if the adversary B outputs b′.
A wins the game if b′ = b.

Therefore, A definitely wins the game with non-negligible probability. That is, SE-
EPOM does not satisfy trapdoor privacy.

6.2.3 Simulation-Based Security Definition

We also consider a simulation-based security model for non-colluding semi-honest ad-
versaries presented in [67, 119]. As we will show later, this more abstract model can
simultaneously capture the security requirements defined above. Due to the scenario of
SE-EPOM, there is a DP (Da), a CP (S1), and an IS (S2). We refer readers to [119] for
details.

Let P = (Da,S1,S2) be the set of all protocol parties and there are three kinds of
adversaries ADa,AS1,AS2 which corrupt Da,S1,S2 respectively.

6.3. THE PROPOSED CONSTRUCTION 112

In the real world, Da run with inputs x,y (with additional auxiliary inputs zx,zy), while
S1,S2 receive auxiliary inputs z1,z2 respectively. Let H ⊂P be the set of honest parties.
If P is honest, i.e., P ∈H , outP is the output of party P. If P is corrupted, i.e., P ∈P\H,
outP is the view of P during the protocol.

For each P∗ ∈P , the partial view of P∗ in a real world execution of protocol Π be-
tween parties P = (Da,S1,S2) with adversaries A = (ADa ,AS1,AS2) present is defined
as follows:

REALP∗
Π,A ,P,z(k,x,y) = {out putP : P ∈ H}∪outP∗.

In the ideal world, all the parties interact with a trusted party that evaluates f . The chal-
lenge DP a sends x,y to f . If either x or y is ⊥, then f returns ⊥. Finally f returns f (x,y)

to the challenge DP a. If P is honest, i.e., P ∈H , let outP be the output returned by f to
party P. If P is corrupted, i.e., P ∈P\H, let outP be some value output by P. For each
P∗ ∈P , the partial view of P∗ in an ideal world execution of protocol Π between parties
P = (Da,S1,S2) with independent simulators S = (SDa ,SS1,SS2) present is defined as
follows:

IDEALP∗
f ,S ,P,z(k,x,y) = {out putP : P ∈ H}∪outP∗.

Informally, a protocol Π is considered secure against non-colluding semi-honest adver-
saries if it partially emulates evaluation of f in the ideal world.

Definition 39. Let f be a deterministic functionality among parties P = (Da,S1,S2) and
Π be a protocol among parties P = (Da,S1,S2). Furthermore, let H = /0, i.e., each party
P ∈P is semi-honest non-colluding parties. We say that Π(P)-securely computes f if
there exists a set Sim = (SimDa ,SimS1,SimS2) of PPT transformations such that for all
semi-honest non-colluding adversaries A = (ADa ,AS1 ,AS2), for all x,y ∈ {0,2µ − 1},
z ∈ {0,2µ −1} and for all parties P ∈P ,

{REALP∗
Π,A ,P,z(k,x,y)}k∈N

c
≈ {IDEALP∗

f ,S ,P,z(k,x,y)}k∈N (3)

where S = (SDa,SS1 ,SS2), SDa = SimDa(ADa), SS1 = SimS1(AS1), and SS2 =

SimS2(AS2).

6.3 The Proposed Construction

6.3.1 An Overview of Our Construction

Given trapdoor t which represents a set Wt of keywords of interest and a searchable ci-
phertext T which represents a set WT of containing keywords, the match of t and T means
all keywords of Wt are included in WT , i.e., Wt ⊆WT . Then deciding whether t matches
T turns to checking whether Wt ⊆WT .

6.3. THE PROPOSED CONSTRUCTION 113

We first use the binary representations and decimal integers to denote each set in accor-
dance with Section 2.1, then perform some calculations on these binary representations
and decimal integers, and finally, tell whether Wt ⊆ WT according to these calculation
results. A novel Subset Decision Mechanism (shown in the next subsection) is proposed
for such a purpose.

Note that for ease of understanding, calculations in Subset Decision Mechanism are all
performed on plaintexts. However, to enforce data and query privacy, calculations should
be all performed on ciphertexts instead. Moreover, the involved ciphertexts sometimes
may come from encryptions under different public keys of different parties, e.g. a trap-
door from RU and a searchable ciphertext from DP. Thus, the remaining issue is to enable
computation on ciphertexts under different public keys. Here we utilize the secure compu-
tation protocols across domains in [67] where a pair of servers are deployed to apply our
Subset Decision Mechanism on ciphertexts, which are built on the base of homomorphic
encryption.

As depicted in Fig. 4.1, our scheme consists of a CP, and multiple IS’s. KGC gener-
ates multiple independent shares of the strong private key and distributes each key pair
between the CP and an IS. When a new IS is introduced into the system, the KGC can
just repeat the process. Since these key pairs are all independent, even the IS’s collude,
they are not able to derive the strong private key. Then CP can ask one or multiple IS’s to
assist in handling the same search query, where each IS handles a part of keywords. For
instance, 10 keywords could be split into 2 5-keyword parts and handled by 2 IS’s using
the Subset Decision Mechanism introduced later. Under such a distributed system where
multiple parallel IS’s are in service for the same query, the more IS’s are used, the faster
a query will be responded to. Also, it can effectively support load balancing: if an IS is
offline or overloaded, then other IS’s could share the workload. In addition, replication,
an important feature of distributed systems, can also be obtained by letting different IS’s
test on the same data. The usability and reliability are enhanced in this way. To simplify
the description, we will present our scheme with only one IS deployed, and it is straight-
forward to add new IS’s by distributing an independent key pair between the CP and each
new IS.

6.3.2 Subset Decision Mechanism

Assume there is a universal set W = {wµ−1, · · · ,w0} whose binary representation is
(bµ−1, · · · ,b0) = (1, · · · ,1), and its corresponding decimal integer is SUM. There are two
subsets WT and Wt of W , whose binary representation are (Tµ−1, · · · ,T0) and (tµ−1, · · · , t0),
respectively. Their corresponding decimal integer are T and t, respectively.

Our method of deciding Wt ⊆ WT is to make sure that there is not any i s.t. ti = 1
and Ti = 0. The deciding procedure is elaborated as follows. Given the µ bit binary

6.3. THE PROPOSED CONSTRUCTION 114

representations of T , its complement is (¬Tµ−1, · · · ,¬T0), whose corresponding integer
is ¬T . Then we compute the bitwise addition ci of ti and ¬Ti. Finally, if none of ci = 2,
Wt ⊆WT ; otherwise, Wt 6⊆WT . The formal mechanism is outlined in Algorithm 4.

Algorithm 4 Subset Decision

Input: A universal set W = {wµ−1, · · · ,w0}, two subsets WT ,Wt ⊆W .
Output: Whether Wt ⊆WT .

1: Compute the binary representations (Tµ−1, · · · ,T0), (tµ−1, · · · , t0) of WT ,Wt .
2: Compute the complement (¬Tµ−1, · · · ,¬T0) of (Tµ−1, · · · ,T0).
3: Set i = 0,R = 1.
4: while i < µ do
5: ci = ¬Ti + ti,
6: di = 2− ci,
7: R = R ·di,
8: end while
9: if R = 0 then

10: return Wt 6⊆WT .
11: else
12: return Wt ⊆WT .
13: end if

Besides, our another observation can somehow accelerate the algorithm when Wt 6⊆WT .
That is, when Wt ⊆ WT , sum = t +¬T ≤ SUM = 2µ − 1. Accordingly, if sum > SUM,
we must have Wt 6⊆WT . The mechanism with this modification is outlined in Algorithm
5. For ease of understanding, we take Table 6.1 as a toy example to illustrate the subset
decision mechanism in Algorithm 5.

Algorithm 5 Subset Decision with Modification

Input: A universal set W = {wµ−1, · · · ,w0}, two subsets WT ,Wt ⊆W .
Output: Whether Wt ⊆WT .

1: Besides computations in Step 1, 2 of Algorithm 4, compute the decimal integers T, t
of WT ,Wt , SUM = 2µ −1 of W , ¬T = SUM−T , sum = ¬T + t.

2: if sum > SUM then
3: return Wt 6⊆WT .
4: else
5: Go to Step 3 of Algorithm 4.
6: end if

Correctness Analysis. Here we will demonstrate the correctness of Algorithm 5.

• For the output that Wt 6⊆WT , it splits into two cases.

– Case 1. When sum ≤ SUM but there exist carries in the addition bitwise of
µ bits, suppose the least bit where there is a carry generated from is the ith

6.3. THE PROPOSED CONSTRUCTION 115

Table 6.1: A Toy Example

i
µ µ−1 · · · 0
6 5 4 3 2 1 0

SUM 0 1 1 1 1 1 1
T 0 0 0 1 1 0
¬T 1 1 1 0 0 1
t1 0 0 0 1 0 1

sum 0 1 1 1 1 1 0
c 1 1 1 1 0 2
d 1 1 1 1 2 0
t2 0 0 1 1 1 0

sum 1 0 0 0 1 1 1
t3 0 0 0 1 0 0

sum 0 1 1 1 1 0 1
c 1 1 1 1 0 1
d 1 1 1 1 2 1

0 sum is the addition of ¬T and t. c and d are intermediate values in Algorithm
4. Here µ = 6,SUM = 63,W = {w5, · · · ,w0},T = 6,WT = {w2,w1},¬T =
57. Each bit of the binary representation is listed on their right side.

1 In this case, t = 5,Wt = {w2,w0}. Though sum = 62 ≤ SUM, there exists a
carry in the addition bitwise of 6 bits and the least bit where there is a carry
generated from is the 0th bit. Then we have sum0 = 0,c0 = 2,d0 = 0 caused
by ¬T0 = 1,T0 = 0, t0 = 1. Thus, w0 ∈Wt ,w0 /∈WT , Wt 6⊆WT .

2 In this case, t = 14,Wt = {w3,w2,w1}. sum = 71 > SUM, without additional
checking, we have that there must exist at least one carry in the addition
bitwise of the 6 bits so that the carry is delivered forward to the 6th bit, i.e.,
sum6 = 1 s.t. sum > SUM since SUM only has 6 bits, i.e., SUM6 = 0. Then
the reasoning is similar to the above case and the least bit where there is a
carry generated from is the 3th bit caused by ¬T3 = 1,T3 = 0, t3 = 1. Thus,
w3 ∈Wt ,w3 /∈WT , Wt 6⊆WT .

3 In this case, t = 4,Wt = {w2}. sum = 61 ≤ SUM and there is not any carry
in the addition bitwise of 6 bits, then we have ci = ¬Ti + ti = 0/1 s.t. di =
2− ci 6= 0 for each i ∈ {0, · · · ,5} caused by ¬Ti, ti are not 1 simultaneously,
i.e., they satisfy ¬Ti = 0,Ti = 1, ti = 0 or ¬Ti = 0,Ti = 1, ti = 1 or ¬Ti = 1,Ti =
0, ti = 0. That is, for each i ∈ {0, · · · ,5}, if wi ∈Wt , we must have wi ∈WT .
Thus, Wt ⊆WT .

6.3. THE PROPOSED CONSTRUCTION 116

bit for i ∈ {0, · · · ,µ − 1}, i.e., di = 2− ci = 0,ci = 2. Then we must have
¬Ti = 1,Ti = 0, ti = 1 which means the keyword wi ∈ Wt ,wi /∈ WT . Thus,
Wt 6⊆WT .

– Case 2. When sum > SUM, there must exist at least one carry in the addition
bitwise of the µ bits so that the carry is delivered forward to the µth bit,
i.e., sumµ = 1 > SUMµ = 0 since SUM = 2µ − 1 only has µ bits. Then the
reasoning is similar to Case 1 and we come to the conclusion that Wt 6⊆WT .

• For the output that Wt ⊆WT , there is only one case:

– Case 3. When sum ≤ SUM and there is not any carry in the addition bitwise
of µ bits, we must have ci = ¬Ti + ti = 0/1 s.t. di = 2− ci 6= 0 for each
i ∈ {0, · · · ,µ−1}. It means ¬Ti, ti should not be both 1, then we have

¬Ti = 0,Ti = 1, ti = 0 or
¬Ti = 0,Ti = 1, ti = 1 or
¬Ti = 1,Ti = 0, ti = 0.

In the above three items, we have if wi ∈Wt , then wi ∈WT . Thus, we come to
the conclusion that Wt ⊆WT .

6.3.3 Detailed Construction

For clarity, we denote the Distributed Two Trapdoors Public-Key Cryptosystem as DT-
PKC. Our protocol is outlined based on the workflow of Algorithm 4 as follows:

KeyGen. Given the security parameter λ , KGC, DPs and RUs perform the following
operations:

1. KGC finds two large primes p,q s.t. L (p) = L (q) = λ . Then KGC first runs
KeyGen to get the strong private key SK = s and runs SKeyS to generate two partial
strong private key SK(1) = s1,SK(2) = s2. KGC also initializes a keyword set W

which contains µ keywords as the universal keyword set. Then KGC publishes the
public parameter params = (W ,µ,N,g), sends SKCP = SK(1) = s1 to CP, the secret
key SKIS = SK(2) = s2 to IS, and keeps SK = s secret.

2. Each DP runs KeyGen to generate its own key pair of the public key pkDP =

(N,g,hDP) and the corresponding weak private key skDP = θDP, then publishes
pkDP and keeps skDP secret. Each RU runs KeyGen to generate its own key pair of
the public key pkRU = (N,g,hRU) and the corresponding weak private key skRU =

θRU , then publishes pkRU and keeps skRU secret.

6.3. THE PROPOSED CONSTRUCTION 117

Store. Given DP’s public key PKDP = pkDP and a document keyword set WT ⊆ W

to be processed, due to W , DP computes the corresponding searchable ciphertext T ∈
{0, · · · ,2µ − 1} whose binary representation is (Tµ−1, · · · ,T0) in the same way that we
mentioned in Section 2.1, runs Enc to get the encrypted searchable ciphertext [[T]]pkDP

and sends it to CP.
Trapdoor. Given RU’s public key PKRU = pkRU and the keyword set Wt of interest, due

to W , RU extracts the keyword set Wt ⊆ W of interest and computes the corresponding
trapdoor t ∈ {0, · · · ,2µ−1} whose binary representation is (tµ−1, · · · , t0) in the same way
that we mentioned in Section 2.1, runs Enc to get the encrypted trapdoor [[t]]pkRU and sends
it to CP.

Test. Given DP’s public key PKDP = pkDP, RU’s public key PKRU = pkRU , CP’s secret
key SKCP = SK(1), IS’s secret key SKIS = SK(2), RU’s encrypted trapdoor [[t]]pkRU and an
encrypted searchable ciphertext [[T]]pkDP , CP and IS perform the following 4 steps which
will be later elaborated on in Algorithm 6, 7, 8 and 9:

Step−1. Given [[t]]pkRU and [[T]]pkDP , CP jointly computes the ciphertext of each bit of
¬T and t, i.e., [[¬Ti]]pkDP and [[ti]]pkRU for i ∈ {0, · · · ,µ−1} with IS.

Step−2. Given [[¬Ti]]pkDP and [[ti]]pkRU for i ∈ {0, · · · ,µ−1}, CP jointly computes the
ciphertext of each ci and di mentioned in our subset deciding mechanism, i.e., [[ci]]pkRU

and [[di]]pkRU with IS.
Step−3. Given [[di]]pkRU , CP jointly computes the multiplication of each di for i ∈
{0, · · · ,µ−1} and the value after randomization, i.e., [[R]]pkRU and [[f]]pkRU with IS.

Step−4. Given [[f]]pkRU , RU outputs 0 which means T does not match t, RU does not
ask CP for the current document; outputs 1 which means T matches t, RU asks CP for the
current document.

Algorithm 6 Step−1.

Input: [[t]]pkRU , [[T]]pkDP , pkDP, pkRU , skCP, skIS.
Output: [[¬Ti]]pkDP and [[ti]]pkRU for i ∈ {0, · · · ,µ−1}.

1: CP computes:
[[SUM]]pkDP

= [[2µ −1]]pkDP ,

[[¬T]]pkDP = [[SUM]]pkDP · ([[T]]pkDP)
N−1,

2: CP runs SBD protocol with IS:

SBD([[¬T]]pkDP)→ ([[¬Tµ−1]]pkDP , · · · , [[¬T0]]pkDP),

SBD([[t]]pkRU)→ ([[tµ−1]]pkRU , · · · , [[t0]]pkRU).

6.3. THE PROPOSED CONSTRUCTION 118

Algorithm 7 Step−2.

Input: [[¬Ti]]pkDP and [[ti]]pkRU for i ∈ {0, · · · ,µ−1}, pkDP, pkRU , skCP, skIS.
Output: [[di]]pkRU .

1: CP runs SAD protocol with IS for i ∈ {0, · · · ,µ−1}:

SAD([[¬Ti]]pkDP, [[ti]]pkRU)→ [[ci]]pkRU ,

2: CP computes for i ∈ {0, · · · ,µ−1}:

[[di]]pkRU = [[2]]pkRU · ([[ci]]pkRU)
N−1.

Algorithm 8 Step−3.

Input: [[di]]pkRU for i ∈ {0, · · · ,µ−1}, pkRU , skCP, skIS.
Output: [[f]]pkRU .

1: CP sets [[R]]pkRU = [[1]]pkRU and i = 0,
2: CP runs SMD protocol with IS:
3: while i < µ do
4: SMD([[R]]pkRU , [[di]]pkRU)→ [[R]]pkRU ,
5: end while
6: CP chooses r R← Z∗N s.t. gcd(r,N) = 1 and computes:

[[f]]pkRU = [[r ·R]]pkRU = [[R]]rpkRU
.

Algorithm 9 Step−4.

Input: [[f]]pkRU , skRU .
Output: 0 or 1.

1: RU decrypts [[f]]pkRU with its weak private key skRU :

DskRU ([[f]]pkRU)→ f .

2: if f = 0 then
3: return 0.
4: else
5: return 1.
6: end if

6.4. SECURITY PROOF 119

6.4 Security Proof

In this section, we first demonstrate that the secure realization of SE-EPOM according to
Definition 39 implies the security requirements of searchable ciphertext indistinguisha-
bility and search pattern privacy. Then we prove the security of our scheme based on the
security model defined in Definition 39 so that we can directly obtain searchable cipher-
text indistinguishability and search pattern privacy of our scheme.

6.4.1 Relation between Security Models and Simulation-Based Secu-
rity

Theorem 12. An SE-EPOM satisfies ciphertext indistinguishability and trapdoor privacy

if it is securely realized according to Definition 39 with adversaries A = (ADa ,AS1 ,AS2)

present.

Proof. Assume that SE-EPOM does not satisfy (one of) ciphertext indistinguishability
or trapdoor privacy. We show that SE-EPOM cannot be securely realized according to
Definition 39.

There is a distinguisher Z trying to distinguish the real world from the ideal world.

1. Assume that SE-EPOM does not satisfy the searchable ciphertext indistinguishabil-
ity in Definition 36. That is, there exists an adversary B such that Equation (1) is
non-negligible.

The distinguisher Z asks A or S to corrupt S1 (CP) so that S1 relays each message
which it received from Da (DP) to Z (in the real world). S1 behaves honestly. Z

internally runs the adversary B:

If B sends WT,0,WT,1 ⊆W to the challenger, then

(a) Z activates Da with input (Store, sid, WT,b) where b ∈ {0,1} is a random bit.

(b) In the real world,

Da sends SC to S1(A), then S1(A) replays it to Z .

In the ideal world,

Da sends (Store, sid, WT,b) to f .

f sends |WT,b| to S .

S computes SC′ and sends it to Z .

Finally Z outputs 1 if and only if B outputs 1.

If Z interacts with the protocol Π, SC is simulated for B since A plays the role of
AS1 . While, if Z interacts with SS1 , SC′ is simulated for B since the ideal world
adversary S plays the role of SS1 .

6.4. SECURITY PROOF 120

From our assumption, there exists an adversary B which distinguishes searchable
ciphertexts in the real world, outputting 1 with non-negligible advantage over 0,
while in the ideal world outputs 1 with probability 1

2 . Obliviously, the distinguisher
Z which runs B as a subroutine can distinguish the partial view of the party S1 in
the real world execution from that of the ideal world execution. That is, the protocol
cannot securely realize SE-EPOM.

2. Assume that SE-EPOM does not satisfy the trapdoor privacy in Definition 38. That
is, there exists an adversary B′ such that Equation (2) is non-negligible.

The distinguisher Z asks A or S to corrupt S1 (CP) so that S1 relays each message
which it received from RU to Z (in the real world). S1 behaves honestly. Z

internally runs the adversary B′:

If B′ sends Wt,0,Wt,1 ⊆W to Z , then

(a) Z activates RU with input (Trapdoor, sid, Wt,b) where b ∈ {0,1} is a random
bit.

(b) In the real world,

RU sends td to S1(A), then S1(A) replays it to Z .

In the ideal world,

RU sends (Trapdoor, sid, Wt,b) to f .

f sends |Wt,b| to S .

S computes td′ and sends it to Z .

Finally Z outputs 1 if and only if B′ outputs 1.

If Z interacts with the protocol Π, td is simulated for B′ since A plays the role of
AS1 . While, if Z interacts with SS1 , td′ is simulated for B′ since the ideal world
adversary S plays the role of SS1 .

From our assumption, there exists an adversary B′ which distinguishes trapdoors
in the real world, outputting 1 with non-negligible advantage over 0, while in the
ideal world outputs 1 with probability 1

2 . Obviously, the distinguisher Z which
runs B′ as a subroutine can distinguish the partial view of the party S1 in the the
real world execution from that of the ideal world execution. That is, the protocol
cannot securely realize SE-EPOM.

6.4.2 Simulation-Based Security Proof

Theorem 13. The protocol described in Section 6.3.3 securely realizes SE-EPOM ac-

cording to Definition 39 with adversaries A = (ADa,AS1,AS2) present.

6.4. SECURITY PROOF 121

Proof. SimDa receives x as input and simulates ADa as follows: it computes [[T]]pkDP ←
Encpka(T), returns [[T]]pkDP to ADa and outputs ADa’s entire view. The view of ADa

consists of [[T]]pkDP . The view of ADa in both the real world and the ideal world executions
are indistinguishable due to the semantic security of DT-PKC (See Section VI-A Theorem
1 in [67] for details).

SimS1 simulates AS1 as follows: it generates (fictious) encryptions of inputs [[T̂]]pkDP ,
[[t̂]]pkRU by running EncpkDP(T̂),EncpkRU (t̂) on randomly chosen T̂ , t̂ ∈ {0, · · ·2µ − 1},
computes [[SUM]]pkDP , [[¬T̂]]pkDP . It then generates (fictious) intermediate values and en-
cryptions of [[¬T̂i]]PKDP , [[t̂i]]PKRU for i ∈ {0, · · · ,µ−1} of SBD(·) according to T̂ , t̂ , then
computes intermediate values in the same way of Proof of Theorem 3 Section VI-C in
[67], [[ĉi]]PKRU and [[d̂i]]PKRU based on according to T̂ , t̂ for i ∈ {0, · · · ,µ − 1}. It com-
putes intermediate values of SMD(·, ·) and (fictious) encryption of the product [[R̂]]PKRU

according to all d̂i. It then computes (fictious) [[f̂]]pkRU based on the randomly chosen r̂

and [[R̂]]PKRU . SimS1 sends encryptions of all the intermediate values in execution to AS1 .
If AS1 returns ⊥, SimS1 returns ⊥. The view of AS1 consists of the encrypted values it
creates. In both real and the ideal world, it receives the encryptions of R̂, f̂ . The views of
AS1 in both the real and the ideal world executions are indistinguishable, guaranteed by
the fact that DP is honest and the semantic security of DT-PKC.

SimS2 simulates AS2 as follows: it generates the (fictious) encryption of intermediate
values of protocols SBD(·), SAD(·, ·) and SMD(·, ·) by computing on and encrypting
randomly chosen numbers in the same way of Proof of Theorem 3 Section VI-C in [67].
SimS2 sends these encryptions of intermediate values to AS2 . If AS2 returns ⊥, SimS2

returns ⊥. The view of AS2 consists of the encrypted values it creates. In both the real
and the ideal world, it receives the intermediate values in execution. The views of AS2 in
both the real world and the ideal world executions are indistinguishable, guaranteed by
the fact that DP is honest and the semantic security of DT-PKC.

6.4.3 Security due to Security Models

Obviously, due to Theorem 11, Theorem 12 and Theorem 13, we can come to the follow-
ing conclusion:

Corollary 1. Our SE-EPOM scheme satisfies searchable ciphertext indistinguishability,

trapdoor privacy, and search pattern privacy.

6.4.4 Access Pattern Hiding

Access pattern indicates the matching document identifiers revealed in a searching opera-
tion. Access pattern leakage generally comes from the following two aspects: the output
of the test algorithm returned by the CP (within the search procedure), and documents

6.5. PERFORMANCE EVALUATION 122

downloaded by the user after obtaining the searching result (outside the searching pro-
cedure). Many searchable encryption schemes reveal access pattern in both aspects. In
particular, in most of the existing searchable encryption schemes, the result of the test
algorithm obtained by the CP directly indicates whether a document contains the key-
word(s) or not. In contrast, our scheme guards the testing result via semantically secure
encryption so that the CP cannot learn the matching document identifiers corresponding
to a search query. Our Trapdoor Privacy model (Definition 37) has also captured this
feature: the adversary can generate a searchable ciphertext using one of the challenging
keywords if the adversary can tell the matching result between the searchable ciphertext
and the challenging trapdoor, then the adversary can win the game. Therefore, our scheme
achieves access pattern privacy within the search procedure.

On the other hand, access pattern can also be leaked to the CP when the user later
retrieves the documents corresponding to the searching result. This is outside the scope
of the searching procedure and should be handled using other countermeasures. For ex-
ample, the user may batch the searching results when accessing the documents or swap
the access orders based on the results of multiple searching requests. The user may also
access some irrelevant documents on top of the target ones to confuse the storage server.
We should note that these measures can be applied to any searchable encryption scheme
that can protect the test result within the searching procedure.

6.5 Performance Evaluation

6.5.1 Experimental Analysis

Our SE-EPOM is simulated with Java. The communication is evaluated in a distributed
system architecture as depicted in Fig. 6.1. KGC, CP and DP are deployed on PCs with
3.4GHz eight-core processors and 8GB RAM, and IS’s and RU are deployed on PCs with
2.4GHz four-core processors and 4G RAM. For the compared schemes [40, 41] which
support multi-keyword search, the server side is deployed on a PC with 3.4GHz eight-
core processors and 8GB RAM, and the client side is deployed on a PC with 2.4GHz
four-core processors and 4G RAM. All experiments are conducted under 80-bit security
where our parameter N is a 1024 bit-length positive integer. The experimental results are
rendered when the maximal number of keywords in the system is 5, 10, 15 or 20. We
evaluate three schemes on both computational cost and communication cost (number of
bits) in Fig. 6.2.

Fig. 6.2a illustrates the comparison on the time cost of store (build index) algorithm.
[40] uses polynomial interpolation to derive ciphertext based on keywords. Therefore the
time consumption is quadratic with the maximal keywords in the system and is around
1886.75 ms when there are 20 keywords allowed in the system. The time cost of [41] is

6.5. PERFORMANCE EVALUATION 123

linear to the number of the maximal keywords and is about 36.6 ms for 20 keywords. In
comparison, our cost is only 15.4 ms to generate a ciphertext and is independent of the
number of keywords.

Fig. 6.2b demonstrates the performance of trapdoor computation. The time cost of [40]
is linear to the maximal number of keywords in the system and is around 163.4 ms when
there are 20 keywords. [41] uses polynomial interpolation to calculate trapdoor, which
results in a quadratic curve with the maximal number of keywords and needs roughly
2913 ms to generate a trapdoor for 20 keywords. In contrast, ours is constant and only
about 23 ms.

Fig. 6.2c shows the contrast of the testing process. The time cost of [40, 41] seems to
be better than ours since our testing requires rounds of interaction, and network latency
heavily contributes to the time consumption. However, the performance of [40, 41] de-
grades with the increase of the number of keywords, while ours is nearly constant due to
the distributed architecture where testing is undertaken by multiple parallel IS’s. As the
number of keywords increases, the difference in response time will become smaller and
less noticeable.

Fig. 6.2d shows the transcript (public parameters and keys) size in setup and key gen-
eration processes. Ours is not as small as that of the compared schemes [40, 41], but this
will not disadvantage our scheme too much due to the fact that setup and key generation
are both one-time execution. Moreover, their transcript size keeps increasing with the
maximal number of keywords. [40] ’s public parameter size, and [41] ’s user key size are
both linear to the number of the maximal number of keywords in the system. Thus their
size will surpass our constant transcript size when there are more keywords.

Fig. 6.2e and 6.2f demonstrate the comparisons of the trapdoor size and ciphertext size,
respectively. Both [40, 41] derive multiple transcripts in trapdoor generation and store,
and their sizes heavily depend on the maximal number of keywords in the system. Our
trapdoor and ciphertext are both homomorphic ciphertext, which is constant and indepen-
dent of the number of keywords. To be noted, Fig. 6.2f only corresponds to the scenario
of one reader in the system. To enable multiple readers, the size of ciphertext of [40, 41]
will accordingly multiply as the number of readers, resulting in far worse performance.
While in our scheme, one ciphertext supports all users’ access.

Though our testing is not as efficient as the compared ones when the number of key-
words is small, our computational cost of store and trapdoor generation and communica-
tion cost of trapdoor and ciphertext are much better than those of [40, 41]. In addition,
our scheme achieves better functionality and security, as shown in Table 6.2.

6.5. PERFORMANCE EVALUATION 124

(a) (b) (c)

(d) (e) (f)

Figure 6.2: Experimental Results

6.5.2 Comparison with Existing Schemes

A functionality comparison between our scheme and the existing ones is presented in
Table 6.2.

Researches have already reached a consensus on the classification of searchable encryp-
tion schemes, which can be divided into the following four types. Single-reader/single-
writer setting [39] only allows the writer (owner) itself to launch queries and refers to sym-
metric searchable schemes where the writer and the reader are the same parties. Single-
writer/multi-reader setting [26] refers to schemes that enable multiple users to search on
encrypted data produced by a particular writer while multi-writer/single-reader setting [2,
116] means the opposite. Multi-writer/multi-reader setting supports each user to encrypt
and upload data and search on stored encrypted data from all the users as well.

For single-keyword schemes [2, 116], to query multiple keywords, the user needs to
prepare as many trapdoors as the number of keywords in the query. Similarly, the number
of searchable ciphertexts stored with the document is also proportional to the number of
keywords included in the current (target) document |Wid|. For multi-keyword searchable
encryption schemes, the size of the trapdoor and the ciphertext is an important indicator
of efficiency. The size of both trapdoor and ciphertext of [39] is also linear to |Wid|, result-
ing in that the user needs to keep in mind the number of keywords of the document that
it intends to search. The size of both trapdoor and ciphertext of [40, 41] increases with
the maximal number of keywords |W | in the system. [26] builds a connection between
the document and its each contained keyword, hence the ciphertext size is linear to |Wid|.
Their search trapdoor is to generate the pointers of possible connections between each

6.6. CHAPTER SUMMARY 125

keyword in query and each identifier of all stored documents. Hence, the number of such
connections is linear to both the number of keywords in the query |Q| and the number of
documents in storage |DB|. Both our trapdoor and ciphertext are the homomorphic en-
cryption of a decimal integer whose length is irrelevant to the number of keywords. Each
document only needs one searchable ciphertext to represent all its underlying keywords.
Hence the number of searchable ciphertexts stored in the cloud is |DB|. In addition, our
scheme essentially supports multi-reader access, while [40, 41] need to prepare one sepa-
rate ciphertext for each reader to enable multi-reader access, i.e., l · |DB| ciphertexts where
l is the number of readers.

Since the intended reader’s public key is known in traditional PEKS schemes, those
schemes inevitably suffer from KGA. [40] utilizes Type-3 bilinear map to lower KGA suc-
cess probability. [39] is actually a symmetric scheme where both ciphertext and trapdoor
generation need the user’s secret key. Therefore attackers other than the user are unable to
generate ciphertexts for the test. [41] delegates the testing ability to the server by taking
the server’s secret key as input to prevent outside attackers from freely testing, but it is still
vulnerable to internal KGA from the curious server. [26] is a single-writer/multi-reader
scheme which means only the writer can generate ciphertexts.

Our scheme takes secret keys of CP and IS’s as input for testing so that attackers,
including the CP or a set of IS’s are unable to freely test and learn anything about the un-
derlying keywords, thereby resisting KGA. In summary, the performance of our solution
is better than related work.

6.6 Chapter Summary

In this chapter, we introduced the notion of SE-EPOM and formalized its security defini-
tions. Subsequently, we designed a concrete SE-EPOM scheme in a distributed architec-
ture with our novel Subset Decision Mechanism and proved it satisfies our proposed secu-
rity requirements. Besides, the scheme possesses attractive features, including supporting
multi-keyword search, constant size trapdoor and ciphertext, hiding search pattern and ac-
cess pattern during searching, and enabling the multi-writer/multi-reader setting. Finally,
the evaluation of compared schemes and our scheme shows that the overall performance
of our distributed SE-EPOM scheme outperforms other solutions.

6.6. CHAPTER SUMMARY 126

Ta
bl

e
6.

2:
Fu

nc
tio

na
lit

y
C

om
pa

ri
so

n

M
ul

ti-
re

ad
er

M
ul

ti-
w

ri
te

r
M

ul
ti-

ke
yw

or
d

Se
rv

er
K

G
A

re
si

st
an

ce

#
of

ci
ph

er
te

xt
s

Tr
ap

do
or

si
ze

C
ip

he
rt

ex
t

si
ze

[2
]

7
3

7
7

∑
w
∈W
|D

B
[w
]|

O
(|Q
|)

O
(|W

id
|)

[1
16

]
7

3
7

7
∑

w
∈W
|D

B
[w
]|

O
(|Q
|)

O
(|W

id
|)

[3
9]

7
7

3
3

|D
B
|

O
(|W

id
|)

O
(|W

id
|)

[4
0]

7
3

3
7

|D
B
|

O
(|W
|)

O
(|W
|)

[4
1]

7
3

3
7

|D
B
|

O
(|W
|)

O
(|W
|)

[2
6]

3
7

3
3

∑
w
∈W
|D

B
[w
]|

O
(|D

B
|∗
|Q
|)

O
(|W

id
|)

O
ur

s
3

3
3

3
|D

B
|

O
(1
)

O
(1
)

1
#

of
ci

ph
er

te
xt

s:
th

e
nu

m
be

r
of

se
ar

ch
ab

le
ci

ph
er

te
xt

s
in

on
e

re
ad

er
se

tti
ng

.
Tr

ap
do

or
si

ze
:

th
e

si
ze

of
tr

ap
do

or
w

he
n

la
un

ch
in

g
a

qu
er

y
of

m
ul

tip
le

ke
yw

or
ds

.
C

ip
he

rt
ex

t
si

ze
:

th
e

si
ze

of
th

e
se

ar
ch

ab
le

ci
ph

er
te

xt
w

he
n

th
e

do
cu

m
en

ti
nc

lu
de

s
m

ul
tip

le
ke

yw
or

ds
.

Chapter 7

Conclusion and Future Work

This chapter summarizes the contribution of this thesis and develops research plans for
future work.

7.1 Conclusion

As the core technique of implementing keyword search for encrypted content, search-
able encryption is worthy of investigation in a different network environment and system
architectures. In this thesis, we proposed some searchable encryption schemes applied
to cloud storage and distributed systems. Our schemes do not stop at the theoretical
investigation stage but are validated practical by experimental evaluation. This thesis’s
contribution can be concluded in the four aspects: realizing multi-user access based on
Searchable Symmetric Encryption, equipping keyword search function on data dedupli-
cation, enabling multi-reader access for Public-key Encryption with Keyword Search, and
facilitating keyword search in multi-writer/multi-reader mode for distributed systems.

7.1.1 Dynamic Verifiable Searchable Encryption for Multi-User Ac-
cess

Searchable Symmetric Encryption is advantageous for its less time-consuming but is weak
in multi-user access because of the tremendous risk of reckless key distribution. This the-
sis formalized corresponding definitions and security models for Multi-user Verifiable
Searchable Symmetric Encryption with Keyword Search (MVSSE). Then under the syn-
tax of MVSSE, we proposed a Multi-user Verifiable Searchable Symmetric Encryption
scheme which supports data update and indexed by non-single keyword, proved its UC-
security, and conducted performance evaluation.

127

7.2. FUTURE WORK 128

7.1.2 Versatile Message-Locked Encryption with Keyword Search

Besides keyword search, removing redundancy is another challenge for cloud storage.
How to enable keyword search while remaining data deduplication function is still a
blank. In this thesis, we formalized the syntax and security definitions for Message-
Locked Searchable Encryption (MLSE). We subsequently presented a Message-Locked
Encryption with keyword search function within this proposed syntax and proved its se-
curity due to the formalized security models. The performance evaluation was performed,
showing that our scheme is practical for real applications.

7.1.3 Broadcast Authenticated Encryption with Keyword Search

Though known as its inherited multi-writer feature, the Public-key Encryption with Key-
word Search suffers significant obstacles to support the multi-reader setting. Existing
schemes are either under security risks or far from practical. This thesis introduced the
primitive called Broadcast Authenticated Encryption with Keyword Search, formalizing
its definitions and security models. We then presented a concrete scheme and proved that
it satisfies all our security requirements formalized. We also performed a comprehensive
comparison between our scheme and existing works, demonstrating its practicality.

7.1.4 Privacy-Preserving Searchable Encryption for Distributed Sys-
tems

Distributed systems are advantageous over centralized designs, including faster request-
response, better resource allocation, and parallel execution. There have been few privacy-
preserving keyword search protocols in the multi-writer/multi-reader setting, especially
suitable for distributed systems. This thesis formalized the primitive called Searchable
Encryption based on Efficient Privacy-preserving Outsourced calculation framework with
Multiple keys (SE-EPOM) and its security models. Then we presented a concrete con-
struction supporting multi-writer/multi-reader setting for distributed systems and proved
secure. We verified the scheme’s practicability through experiments and confirmed that
the scheme is suitable for distributed systems.

7.2 Future Work

We leave the following topics as the future work of this thesis.

1. Eliminating Limitation on Maximal Number of System Users. Though our MVSSE
scheme has realized a dynamic verifiable keyword search scheme in a multi-user
setting, its maximal number of system users is determined in the system setup stage.

7.2. FUTURE WORK 129

Thus, we leave designing an MVSSE construction free from this limitation as our
future work.

2. Dynamic Message-Locked Searchable Encryption. We have realized the keyword
search function on a deduplication scheme. However, it does not support data or
keyword update operations. Therefore, working out a dynamic scheme is worthy of
more exploration.

3. Privacy-Preserving Keyword Search Protocol with Better Efficiency. Though we
have implemented a privacy-preserving keyword search protocol, it heavily depends
on the interaction between outsourced servers. The number of execution rounds
is not that satisfactory. Thus, we leave designing a secure SE-EPOM with fewer
communication rounds between servers as our future work.

Bibliography

(1) D. X. Song, D. Wagner and A. Perrig, “Practical techniques for searches on en-
crypted data”, Proceeding 2000 IEEE Symposium on Security and Privacy. S&P
2000, 2000, pp. 44–55.

(2) D. Boneh, G. Di Crescenzo, R. Ostrovsky and G. Persiano, “Public key encryption
with keyword search”, International conference on the theory and applications of
cryptographic techniques, 2004, pp. 506–522.

(3) J. W. Byun, H. S. Rhee, H.-A. Park and D. H. Lee, “Off-line keyword guessing
attacks on recent keyword search schemes over encrypted data”, Workshop on
secure data management, 2006, pp. 75–83.

(4) W.-C. Yau, S.-H. Heng and B.-M. Goi, “Off-line keyword guessing attacks on
recent public key encryption with keyword search schemes”, International Con-
ference on Autonomic and Trusted Computing, 2008, pp. 100–105.

(5) R. Curtmola, J. Garay, S. Kamara and R. Ostrovsky, “Searchable symmetric en-
cryption: improved definitions and efficient constructions”, Journal of Computer

Security, 2011, 19, 895–934.

(6) M. S. Islam, M. Kuzu and M. Kantarcioglu, “Access pattern disclosure on search-
able encryption: ramification, attack and mitigation.”, NDSS, 2012, vol. 20, p. 12.

(7) E.-J. Goh et al., “Secure indexes.”, IACR Cryptol. ePrint Arch., 2003, 2003, 216.

(8) M. Chase and S. Kamara, “Structured encryption and controlled disclosure”, In-
ternational conference on the theory and application of cryptology and informa-
tion security, 2010, pp. 577–594.

(9) K. Kurosawa and Y. Ohtaki, “UC-secure searchable symmetric encryption”, Inter-
national Conference on Financial Cryptography and Data Security, 2012, pp. 285–
298.

(10) S. Kamara, C. Papamanthou and T. Roeder, “Dynamic searchable symmetric en-
cryption”, Proceedings of the 2012 ACM conference on Computer and communi-
cations security, 2012, pp. 965–976.

130

BIBLIOGRAPHY 131

(11) D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu and M. Steiner, “Highly-
scalable searchable symmetric encryption with support for boolean queries”, An-
nual cryptology conference, 2013, pp. 353–373.

(12) S. Kamara and C. Papamanthou, “Parallel and dynamic searchable symmetric
encryption”, International conference on financial cryptography and data security,
2013, pp. 258–274.

(13) K. Kurosawa and Y. Ohtaki, “How to update documents verifiably in searchable
symmetric encryption”, International Conference on Cryptology and Network Se-
curity, 2013, pp. 309–328.

(14) D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu and M.
Steiner, “Dynamic searchable encryption in very-large databases: data structures
and implementation.”, NDSS, 2014, vol. 14, pp. 23–26.

(15) S. Kamara and T. Moataz, “Boolean searchable symmetric encryption with worst-
case sub-linear complexity”, Annual International Conference on the Theory and
Applications of Cryptographic Techniques, 2017, pp. 94–124.

(16) Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on
remote encrypted data”, International conference on applied cryptography and
network security, 2005, pp. 442–455.

(17) R. Cheng, J. Yan, C. Guan, F. Zhang and K. Ren, “Verifiable searchable sym-
metric encryption from indistinguishability obfuscation”, Proceedings of the 10th
ACM symposium on information, computer and communications security, 2015,
pp. 621–626.

(18) W. Ogata and K. Kurosawa, “Efficient no-dictionary verifiable searchable sym-
metric encryption”, International Conference on Financial Cryptography and Data
Security, 2017, pp. 498–516.

(19) N. Barić and B. Pfitzmann, “Collision-free accumulators and fail-stop signature
schemes without trees”, International conference on the theory and applications
of cryptographic techniques, 1997, pp. 480–494.

(20) K. S. Kim, M. Kim, D. Lee, J. H. Park and W.-H. Kim, “Forward secure dynamic
searchable symmetric encryption with efficient updates”, Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, 2017,
pp. 1449–1463.

(21) E. Stefanov, C. Papamanthou and E. Shi, “Practical Dynamic Searchable Encryp-
tion with Small Leakage.”, NDSS, 2014, vol. 71, pp. 72–75.

BIBLIOGRAPHY 132

(22) K. Kurosawa, K. Sasaki, K. Ohta and K. Yoneyama, “UC-secure dynamic search-
able symmetric encryption scheme”, International Workshop on Security, 2016,
pp. 73–90.

(23) C. Zuo, S.-F. Sun, J. K. Liu, J. Shao and J. Pieprzyk, “Dynamic searchable sym-
metric encryption schemes supporting range queries with forward (and back-
ward) security”, European Symposium on Research in Computer Security, 2018,
pp. 228–246.

(24) C. Zuo, S.-F. Sun, J. K. Liu, J. Shao and J. Pieprzyk, “Dynamic searchable sym-
metric encryption with forward and stronger backward privacy”, European Sym-
posium on Research in Computer Security, 2019, pp. 283–303.

(25) F. Bao, R. H. Deng, X. Ding and Y. Yang, “Private query on encrypted data in
multi-user settings”, International Conference on Information Security Practice
and Experience, 2008, pp. 71–85.

(26) S.-F. Sun, J. K. Liu, A. Sakzad, R. Steinfeld and T. H. Yuen, “An efficient non-
interactive multi-client searchable encryption with support for boolean queries”,
European symposium on research in computer security, 2016, pp. 154–172.

(27) S. K. Kermanshahi, J. K. Liu and R. Steinfeld, “Multi-user cloud-based secure
keyword search”, Australasian Conference on Information Security and Privacy,
2017, pp. 227–247.

(28) C. Van Rompay, R. Molva and M. Önen, “Secure and scalable multi-user search-
able encryption”, Proceedings of the 6th International Workshop on Security in
Cloud Computing, 2018, pp. 15–25.

(29) L. Du, K. Li, Q. Liu, Z. Wu and S. Zhang, “Dynamic multi-client searchable
symmetric encryption with support for boolean queries”, Information Sciences,
2020, 506, 234–257.

(30) R. Bost, B. Minaud and O. Ohrimenko, “Forward and backward private searchable
encryption from constrained cryptographic primitives”, Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, 2017,
pp. 1465–1482.

(31) J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou and R. Jalili, “New con-
structions for forward and backward private symmetric searchable encryption”,
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018, pp. 1038–1055.

(32) P. Xu, H. Jin, Q. Wu and W. Wang, “Public-key encryption with fuzzy keyword
search: A provably secure scheme under keyword guessing attack”, IEEE Trans-

actions on computers, 2012, 62, 2266–2277.

BIBLIOGRAPHY 133

(33) C.-h. Wang and T.-y. Tu, “Keyword search encryption scheme resistant against
keyword-guessing attack by the untrusted server”, Journal of Shanghai Jiaotong

University (Science), 2014, 19, 440–442.

(34) R. Chen, Y. Mu, G. Yang, F. Guo and X. Wang, “Dual-server public-key encryp-
tion with keyword search for secure cloud storage”, IEEE transactions on infor-

mation forensics and security, 2015, 11, 789–798.

(35) Q. Huang and H. Li, “An efficient public-key searchable encryption scheme se-
cure against inside keyword guessing attacks”, Information Sciences, 2017, 403,
1–14.

(36) D. He, M. Ma, S. Zeadally, N. Kumar and K. Liang, “Certificateless public key
authenticated encryption with keyword search for industrial internet of things”,
IEEE Transactions on Industrial Informatics, 2017, 14, 3618–3627.

(37) J. Li, Q. Wang, C. Wang, N. Cao, K. Ren and W. Lou, “Fuzzy keyword search
over encrypted data in cloud computing”, 2010 Proceedings IEEE INFOCOM,
2010, pp. 1–5.

(38) J. Wang, H. Ma, Q. Tang, J. Li, H. Zhu, S. Ma and X. Chen, “Efficient verifiable
fuzzy keyword search over encrypted data in cloud computing”, Computer science

and information systems, 2013, 10, 667–684.

(39) P. Wang, H. Wang and J. Pieprzyk, “Keyword field-free conjunctive keyword
searches on encrypted data and extension for dynamic groups”, International con-
ference on cryptology and network security, 2008, pp. 178–195.

(40) B. Zhang and F. Zhang, “An efficient public key encryption with conjunctive-
subset keywords search”, Journal of Network and Computer Applications, 2011,
34, 262–267.

(41) K. Huang, R. Tso and Y.-C. Chen, “Somewhat semantic secure public key encryp-
tion with filtered-equality-test in the standard model and its extension to search-
able encryption”, Journal of Computer and System Sciences, 2017, 89, 400–409.

(42) W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou and H. Li, “Privacy-preserving
multi-keyword text search in the cloud supporting similarity-based ranking”, Pro-
ceedings of the 8th ACM SIGSAC symposium on Information, computer and
communications security, 2013, pp. 71–82.

(43) N. Cao, C. Wang, M. Li, K. Ren and W. Lou, “Privacy-preserving multi-keyword
ranked search over encrypted cloud data”, IEEE Transactions on parallel and

distributed systems, 2013, 25, 222–233.

BIBLIOGRAPHY 134

(44) W. Sun, S. Yu, W. Lou, Y. T. Hou and H. Li, “Protecting your right: Attribute-
based keyword search with fine-grained owner-enforced search authorization in
the cloud”, IEEE INFOCOM 2014-IEEE Conference on Computer Communica-
tions, 2014, pp. 226–234.

(45) J. Katz and Y. Lindell, Introduction to modern cryptography, CRC press, 2020.

(46) S. Goldwasser and M. Bellare, “Lecture notes on cryptography”, Summer course

“Cryptography and computer security” at MIT, 1996, 1999, 1999.

(47) A. J. Menezes, P. C. Van Oorschot and S. A. Vanstone, Handbook of applied

cryptography, CRC press, 2018.

(48) W. Mao, Modern cryptography: theory and practice, Pearson Education India,
2003.

(49) D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing”,
Annual international cryptology conference, 2001, pp. 213–229.

(50) S. D. Galbraith, K. G. Paterson and N. P. Smart, “Pairings for cryptographers”,
Discrete Applied Mathematics, 2008, 156, 3113–3121.

(51) A. M. Odlyzko, “Discrete logarithms in finite fields and their cryptographic sig-
nificance”, Workshop on the Theory and Application of of Cryptographic Tech-
niques, 1984, pp. 224–314.

(52) W. Diffie and M. Hellman, “New directions in cryptography”, IEEE transactions

on Information Theory, 1976, 22, 644–654.

(53) D. Boneh, “The decision diffie-hellman problem”, International Algorithmic Num-
ber Theory Symposium, 1998, pp. 48–63.

(54) D. Boneh, X. Boyen and E.-J. Goh, “Hierarchical identity based encryption with
constant size ciphertext”, Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, 2005, pp. 440–456.

(55) S. Goldwasser, S. Micali and R. L. Rivest, “A digital signature scheme secure
against adaptive chosen-message attacks”, SIAM Journal on computing, 1988, 17,
281–308.

(56) D. Chaum, “Blind signature system”, Advances in cryptology, 1984, pp. 153–153.

(57) D. Schröder and D. Unruh, “Security of blind signatures revisited”, International
Workshop on Public Key Cryptography, 2012, pp. 662–679.

(58) N. Asghar, “A survey on blind digital signatures”, Dept. Combinatorics Optim.,

Univ. Waterloo, ON, Canada, Tech. Rep, 2011.

(59) M. Abdalla, P.-A. Fouque and D. Pointcheval, “Password-based authenticated key
exchange in the three-party setting”, International Workshop on Public Key Cryp-
tography, 2005, pp. 65–84.

BIBLIOGRAPHY 135

(60) A. Fiat and M. Naor, “Broadcast encryption”, Annual International Cryptology
Conference, 1993, pp. 480–491.

(61) D. Boneh, C. Gentry and B. Waters, “Collusion resistant broadcast encryption
with short ciphertexts and private keys”, Annual international cryptology confer-
ence, 2005, pp. 258–275.

(62) R. Canetti, “Universally composable security: A new paradigm for cryptographic
protocols”, Proceedings 42nd IEEE Symposium on Foundations of Computer Sci-
ence, 2001, pp. 136–145.

(63) M. Bellare, S. Keelveedhi and T. Ristenpart, “Message-locked encryption and
secure deduplication”, Annual international conference on the theory and appli-
cations of cryptographic techniques, 2013, pp. 296–312.

(64) J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon and M. Theimer, “Reclaiming
space from duplicate files in a serverless distributed file system”, Proceedings
22nd international conference on distributed computing systems, 2002, pp. 617–
624.

(65) S. Halevi, D. Harnik, B. Pinkas and A. Shulman-Peleg, “Proofs of ownership in
remote storage systems”, Proceedings of the 18th ACM conference on Computer
and communications security, 2011, pp. 491–500.

(66) Y. Zhao and S. S. Chow, “Towards proofs of ownership beyond bounded leakage”,
International Conference on Provable Security, 2016, pp. 340–350.

(67) X. Liu, R. H. Deng, K.-K. R. Choo and J. Weng, “An efficient privacy-preserving
outsourced calculation toolkit with multiple keys”, IEEE Transactions on Infor-

mation Forensics and Security, 2016, 11, 2401.

(68) E. Bresson, D. Catalano and D. Pointcheval, “A Simple Public-Key Cryptosystem
with a Double Trapdoor Decryption Mechanism and Its Applications”, Advances
in Cryptology - ASIACRYPT 2003, 9th International Conference on the Theory
and Application of Cryptology and Information Security, Taipei, Taiwan, Novem-
ber 30 - December 4, 2003, Proceedings, 2003, pp. 37–54.

(69) P.-A. Fouque and D. Pointcheval, “Threshold cryptosystems secure against chosen-
ciphertext attacks”, International Conference on the Theory and Application of
Cryptology and Information Security, 2001, pp. 351–368.

(70) C. Gentry, A fully homomorphic encryption scheme, 2009, vol. 20.

(71) B. K. Samanthula, H. Chun and W. Jiang, “An efficient and probabilistic secure
bit-decomposition”, Proceedings of the 8th ACM SIGSAC symposium on Infor-
mation, computer and communications security, 2013, pp. 541–546.

BIBLIOGRAPHY 136

(72) X. Liu, G. Yang, Y. Mu and R. H. Deng, “Multi-user verifiable searchable sym-
metric encryption for cloud storage”, IEEE Transactions on Dependable and Se-

cure Computing, 2018, 17, 1322–1332.

(73) C. Bösch, Q. Tang, P. Hartel and W. Jonker, “Selective document retrieval from
encrypted database”, International Conference on Information Security, 2012,
pp. 224–241.

(74) J. Yu, P. Lu, Y. Zhu, G. Xue and M. Li, “Toward secure multikeyword top-k re-
trieval over encrypted cloud data”, IEEE transactions on dependable and secure

computing, 2013, 10, 239–250.

(75) P. Xu, Q. Wu, W. Wang, W. Susilo, J. Domingo-Ferrer and H. Jin, “Generating
searchable public-key ciphertexts with hidden structures for fast keyword search”,
IEEE Transactions on Information Forensics and Security, 2015, 10, 1993–2006.

(76) K. Liang, X. Huang, F. Guo and J. K. Liu, “Privacy-preserving and regular lan-
guage search over encrypted cloud data”, IEEE Transactions on Information Foren-

sics and Security, 2016, 11, 2365–2376.

(77) R. Chen, Y. Mu, G. Yang, F. Guo, X. Huang, X. Wang and Y. Wang, “Server-aided
public key encryption with keyword search”, IEEE Transactions on Information

Forensics and Security, 2016, 11, 2833–2842.

(78) Q. Chai and G. Gong, “Verifiable symmetric searchable encryption for semi-
honest-but-curious cloud servers”, Proceedings of IEEE International Conference
on Communications, ICC 2012, Ottawa, ON, Canada, June 10-15, 2012, 2012,
pp. 917–922.

(79) X. Liu, G. Yang, W. Susilo, J. Tonien, R. Chen and L. Xixiang, “Message-Locked
Searchable Encryption: A New Versatile Tool for Secure Cloud Storage”, IEEE

Transactions on Services Computing, 2020, 1–1.

(80) Forecast number of personal cloud storage consumers/users worldwide from 2014

to 2020 (in millions), https://www.statista.com/statistics/499558/
worldwide-personal-cloud-storage-users/, Accessed August 30, 2018.

(81) S. Keelveedhi, M. Bellare and T. Ristenpart, “DupLESS: Server-Aided Encryp-
tion for Deduplicated Storage”, Proceedings of the 22th USENIX Security Sym-
posium, Washington, DC, USA, August 14-16, 2013, 2013, pp. 179–194.

(82) M. Bellare and S. Keelveedhi, “Interactive message-locked encryption and secure
deduplication”, IACR international workshop on public key cryptography, 2015,
pp. 516–538.

https://www.statista.com/statistics/499558/worldwide-personal-cloud-storage-users/
https://www.statista.com/statistics/499558/worldwide-personal-cloud-storage-users/

BIBLIOGRAPHY 137

(83) R. Chen, Y. Mu, G. Yang and F. Guo, “BL-MLE: block-level message-locked
encryption for secure large file deduplication”, IEEE Transactions on Information

Forensics and Security, 2015, 10, 2643–2652.

(84) Y. Zhao and S. S. Chow, “Updatable Block-Level Message-Locked Encryption”,
Proceedings of the 2017 ACM on Asia Conference on Computer and Communi-
cations Security, 2017, pp. 449–460.

(85) G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson and D.
Song, “Provable data possession at untrusted stores”, Proceedings of the 14th
ACM conference on Computer and communications security, 2007, pp. 598–609.

(86) M. Abadi, D. Boneh, I. Mironov, A. Raghunathan and G. Segev, “Message-locked
encryption for lock-dependent messages”, Annual cryptology conference, 2013,
pp. 374–391.

(87) J. Li, X. Chen, M. Li, J. Li, P. P. Lee and W. Lou, “Secure deduplication with
efficient and reliable convergent key management”, IEEE transactions on parallel

and distributed systems, 2013, 25, 1615–1625.

(88) R. C. Merkle, “A digital signature based on a conventional encryption function”,
Conference on the theory and application of cryptographic techniques, 1987,
pp. 369–378.

(89) R. Di Pietro and A. Sorniotti, “Boosting efficiency and security in proof of owner-
ship for deduplication”, Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, 2012, pp. 81–82.

(90) W. K. Ng, Y. Wen and H. Zhu, “Private data deduplication protocols in cloud stor-
age”, Proceedings of the 27th Annual ACM Symposium on Applied Computing,
2012, pp. 441–446.

(91) H. Shacham and B. Waters, “Compact proofs of retrievability”, International con-
ference on the theory and application of cryptology and information security,
2008, pp. 90–107.

(92) Y. Dodis, S. Vadhan and D. Wichs, “Proofs of retrievability via hardness amplifi-
cation”, Theory of Cryptography Conference, 2009, pp. 109–127.

(93) D. Cash, A. Küpçü and D. Wichs, “Dynamic proofs of retrievability via oblivious
RAM”, Journal of Cryptology, 2017, 30, 22–57.

(94) D. Boneh, C. Gentry, B. Lynn and H. Shacham, “Aggregate and verifiably en-
crypted signatures from bilinear maps”, International Conference on the Theory
and Applications of Cryptographic Techniques, 2003, pp. 416–432.

(95) C.-P. Schnorr, “Efficient signature generation by smart cards”, Journal of cryptol-

ogy, 1991, 4, 161–174.

BIBLIOGRAPHY 138

(96) X. Liu, K. He, G. Yang, W. Susilo, J. Tonien and Q. Huang, “Broadcast authenti-
cated encryption with keyword search”, Australasian Conference on Information
Security and Privacy, Accepted, 2021.

(97) P. Voigt and A. Von dem Bussche, “The eu general data protection regulation
(gdpr)”, A Practical Guide, 1st Ed., Cham: Springer International Publishing,
2017, 10, 3152676.

(98) E. Goldman, “An Introduction to the California Consumer Privacy Act (CCPA)”,
Santa Clara Univ. Legal Studies Research Paper, 2020.

(99) M. Bellare, A. Boldyreva, A. Desai and D. Pointcheval, “Key-privacy in public-
key encryption”, International Conference on the Theory and Application of Cryp-
tology and Information Security, 2001, pp. 566–582.

(100) C. Delerablée, “Identity-based broadcast encryption with constant size ciphertexts
and private keys”, International Conference on the Theory and Application of
Cryptology and Information Security, 2007, pp. 200–215.

(101) C. Gentry and B. Waters, “Adaptive security in broadcast encryption systems
(with short ciphertexts)”, Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, 2009, pp. 171–188.

(102) M. Ali, H. Ali, T. Zhong, F. Li, Z. Qin and A. A. AA, “Broadcast Searchable Key-
word Encryption”, 2014 IEEE 17th International Conference on Computational
Science and Engineering, 2014, pp. 1010–1016.

(103) A. Kiayias, O. Oksuz, A. Russell, Q. Tang and B. Wang, “Efficient encrypted
keyword search for multi-user data sharing”, European symposium on research in
computer security, 2016, pp. 173–195.

(104) P. Jiang, F. Guo and Y. Mu, “Efficient identity-based broadcast encryption with
keyword search against insider attacks for database systems”, Theoretical Com-

puter Science, 2019, 767, 51–72.

(105) J. Kim, W. Susilo, M. H. Au and J. Seberry, “Adaptively secure identity-based
broadcast encryption with a constant-sized ciphertext”, IEEE Transactions on In-

formation Forensics and Security, 2015, 10, 679–693.

(106) D. Naor, M. Naor and J. Lotspiech, “Revocation and tracing schemes for stateless
receivers”, Annual International Cryptology Conference, 2001, pp. 41–62.

(107) J. B. Lotspiech, D. Naor and S. Naor, Method for broadcast encryption and key

revocation of stateless receivers, US Patent 7,039,803, 2006.

(108) A. Barth, D. Boneh and B. Waters, “Privacy in encrypted content distribution
using private broadcast encryption”, International Conference on Financial Cryp-
tography and Data Security, 2006, pp. 52–64.

BIBLIOGRAPHY 139

(109) B. Libert, K. G. Paterson and E. A. Quaglia, “Anonymous broadcast encryption:
Adaptive security and efficient constructions in the standard model”, International
Workshop on Public Key Cryptography, 2012, pp. 206–224.

(110) N. Fazio and I. M. Perera, “Outsider-anonymous broadcast encryption with sub-
linear ciphertexts”, International Workshop on Public Key Cryptography, 2012,
pp. 225–242.

(111) K. He, J. Weng, M. H. Au, Y. Mao and R. H. Deng, “Generic anonymous identity-
based broadcast encryption with chosen-ciphertext security”, Australasian Con-
ference on Information Security and Privacy, 2016, pp. 207–222.

(112) K. He, J. Weng, J.-N. Liu, J. K. Liu, W. Liu and R. H. Deng, “Anonymous identity-
based broadcast encryption with chosen-ciphertext security”, Proceedings of the
11th ACM on Asia Conference on Computer and Communications Security, 2016,
pp. 247–255.

(113) D. Boneh and M. Hamburg, “Generalized identity based and broadcast encryption
schemes”, International Conference on the Theory and Application of Cryptology
and Information Security, 2008, pp. 455–470.

(114) X. Liu, G. Yang, W. Susilo, J. Tonien, X. Liu and J. Shen, “Privacy-preserving
multi-keyword searchable encryption for distributed systems”, IEEE Transactions

on Parallel and Distributed Systems, 2020, 32, 561–574.

(115) G. Wang, C. Liu, Y. Dong, P. Han, H. Pan and B. Fang, “IDCrypt: A Multi-User
Searchable Symmetric Encryption Scheme for Cloud Applications”, IEEE Ac-

cess, 2018, 6, 2908–2921.

(116) L. Xu, X. Yuan, R. Steinfeld, C. Wang and C. Xu, “Multi-Writer Searchable
Encryption: an LWE-based realization and implementation”, Proceedings of the
2019 ACM Asia Conference on Computer and Communications Security, 2019,
pp. 122–133.

(117) O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious
RAMs”, Journal of the ACM (JACM), 1996, 43, 431–473.

(118) M. Nishioka, “Perfect keyword privacy in PEKS systems”, International Confer-
ence on Provable Security, 2012, pp. 175–192.

(119) S. Kamara, P. Mohassel and M. Raykova, “Outsourcing Multi-Party Computa-
tion.”, IACR Cryptology ePrint Archive, 2011, 2011, 272.

	Searchable Encryption for Cloud and Distributed Systems
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Contents
	Introduction
	Background
	Searchable Symmetric Encryption
	Public-key Encryption with Keyword Search

	Motivations and Contribution
	Thesis Organization

	Preliminaries
	Miscellaneous Notations
	Foundations of Algebra
	Group
	Ring and Field

	Bilinear Map
	Complexity Assumptions
	Discrete Logarithm Assumption
	Computational Diffie-Hellman Assumption
	Decisional Diffie-Hellman Assumption
	Computational Bilinear Diffie-Hellman Assumption
	Decisional Bilinear Diffie-Hellman Assumption
	l - Bilinear Diffie-Hellman Exponent Assumption

	Cryptographic Tools
	Collision-Resistant Hash Function
	RSA Accumulator
	Blind Signature
	Real or Random Security
	Pseudo-Random Generator
	Broadcast Encryption
	Universally Composible Security
	Message-Locked Encryption
	Distributed Two-trapdoor Public-Key Cryptosystem
	Secure Bit-Decomposition Protocol (SBD)

	Multi-User Verifiable Searchable Encryption for Cloud Storage
	Introduction
	Related Work
	Our Contribution
	Chapter Organization

	Formal Definition and Security Models
	Formal Definition
	Security Models

	The Proposed Construction
	An Overview of Our Construction
	Detailed Construction

	Security Proof
	Ideal Functionality
	Equivalence between UC-Security and Security Models
	UC-Security of Our Scheme

	Extensions
	Boolean Queries
	Adding or Revoking Users

	Performance Evaluation
	Experimental Analysis
	Comparison with Existing Schemes

	Chapter Summary

	Message-Locked Searchable Encryption for Secure Cloud Storage
	Introduction
	Weakness of Simple Combination of Existing Techniques
	Related Work
	Our Contribution
	Chapter Organization

	Formal Definition and Security Model
	Formal Definition
	Workflow
	Correctness
	Security Models

	The Proposed Scheme
	An Overview of Our Construction
	Detailed Construction
	Correctness

	Security Proof
	Extensions on Proof of Storage
	Performance Evaluation
	Experimental Analysis
	Comparison with Existing Schemes

	Chapter Summary

	Broadcast Authenticated Encryption with Keyword Search
	Introduction
	Related Work
	Our Contribution
	Chapter Organization

	Formal Definition and Security Models
	Formal Definition
	Security Models

	The Proposed Construction
	Detailed Construction
	Correctness

	Security Proof
	Trapdoor Privacy
	Ciphertext Indistinguishability
	Anonymity
	Trapdoor Anonymity

	Performance Evaluation
	Chapter Summary

	Privacy-Preserving Searchable Encryption for Distributed Systems
	Introduction
	Related Work
	Our Contribution
	Chapter Organization

	Formal Definition and Security Models
	Formal Definition
	Security Models
	Simulation-Based Security Definition

	The Proposed Construction
	An Overview of Our Construction
	Subset Decision Mechanism
	Detailed Construction

	Security Proof
	Relation between Security Models and Simulation-Based Security
	Simulation-Based Security Proof
	Security due to Security Models
	Access Pattern Hiding

	Performance Evaluation
	Experimental Analysis
	Comparison with Existing Schemes

	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Dynamic Verifiable Searchable Encryption for Multi-User Access
	Versatile Message-Locked Encryption with Keyword Search
	Broadcast Authenticated Encryption with Keyword Search
	Privacy-Preserving Searchable Encryption for Distributed Systems

	Future Work

	Bibliography

