1,548 research outputs found

    Anonymizing Social Graphs via Uncertainty Semantics

    Full text link
    Rather than anonymizing social graphs by generalizing them to super nodes/edges or adding/removing nodes and edges to satisfy given privacy parameters, recent methods exploit the semantics of uncertain graphs to achieve privacy protection of participating entities and their relationship. These techniques anonymize a deterministic graph by converting it into an uncertain form. In this paper, we propose a generalized obfuscation model based on uncertain adjacency matrices that keep expected node degrees equal to those in the unanonymized graph. We analyze two recently proposed schemes and show their fitting into the model. We also point out disadvantages in each method and present several elegant techniques to fill the gap between them. Finally, to support fair comparisons, we develop a new tradeoff quantifying framework by leveraging the concept of incorrectness in location privacy research. Experiments on large social graphs demonstrate the effectiveness of our schemes

    Using Metrics Suites to Improve the Measurement of Privacy in Graphs

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Social graphs are widely used in research (e.g., epidemiology) and business (e.g., recommender systems). However, sharing these graphs poses privacy risks because they contain sensitive information about individuals. Graph anonymization techniques aim to protect individual users in a graph, while graph de-anonymization aims to re-identify users. The effectiveness of anonymization and de-anonymization algorithms is usually evaluated with privacy metrics. However, it is unclear how strong existing privacy metrics are when they are used in graph privacy. In this paper, we study 26 privacy metrics for graph anonymization and de-anonymization and evaluate their strength in terms of three criteria: monotonicity indicates whether the metric indicates lower privacy for stronger adversaries; for within-scenario comparisons, evenness indicates whether metric values are spread evenly; and for between-scenario comparisons, shared value range indicates whether metrics use a consistent value range across scenarios. Our extensive experiments indicate that no single metric fulfills all three criteria perfectly. We therefore use methods from multi-criteria decision analysis to aggregate multiple metrics in a metrics suite, and we show that these metrics suites improve monotonicity compared to the best individual metric. This important result enables more monotonic, and thus more accurate, evaluations of new graph anonymization and de-anonymization algorithms

    Preserving Link Privacy in Social Network Based Systems

    Full text link
    A growing body of research leverages social network based trust relationships to improve the functionality of the system. However, these systems expose users' trust relationships, which is considered sensitive information in today's society, to an adversary. In this work, we make the following contributions. First, we propose an algorithm that perturbs the structure of a social graph in order to provide link privacy, at the cost of slight reduction in the utility of the social graph. Second we define general metrics for characterizing the utility and privacy of perturbed graphs. Third, we evaluate the utility and privacy of our proposed algorithm using real world social graphs. Finally, we demonstrate the applicability of our perturbation algorithm on a broad range of secure systems, including Sybil defenses and secure routing.Comment: 16 pages, 15 figure

    Quantification of De-anonymization Risks in Social Networks

    Full text link
    The risks of publishing privacy-sensitive data have received considerable attention recently. Several de-anonymization attacks have been proposed to re-identify individuals even if data anonymization techniques were applied. However, there is no theoretical quantification for relating the data utility that is preserved by the anonymization techniques and the data vulnerability against de-anonymization attacks. In this paper, we theoretically analyze the de-anonymization attacks and provide conditions on the utility of the anonymized data (denoted by anonymized utility) to achieve successful de-anonymization. To the best of our knowledge, this is the first work on quantifying the relationships between anonymized utility and de-anonymization capability. Unlike previous work, our quantification analysis requires no assumptions about the graph model, thus providing a general theoretical guide for developing practical de-anonymization/anonymization techniques. Furthermore, we evaluate state-of-the-art de-anonymization attacks on a real-world Facebook dataset to show the limitations of previous work. By comparing these experimental results and the theoretically achievable de-anonymization capability derived in our analysis, we further demonstrate the ineffectiveness of previous de-anonymization attacks and the potential of more powerful de-anonymization attacks in the future.Comment: Published in International Conference on Information Systems Security and Privacy, 201
    corecore