3,151 research outputs found

    Centrality anomalies in complex networks as a result of model over-simplification

    Get PDF
    Tremendous advances have been made in our understanding of the properties and evolution of complex networks. These advances were initially driven by information-poor empirical networks and theoretical analysis of unweighted and undirected graphs. Recently, information-rich empirical data complex networks supported the development of more sophisticated models that include edge directionality and weight properties, and multiple layers. Many studies still focus on unweighted undirected description of networks, prompting an essential question: how to identify when a model is simpler than it must be? Here, we argue that the presence of centrality anomalies in complex networks is a result of model over-simplification. Specifically, we investigate the well-known anomaly in betweenness centrality for transportation networks, according to which highly connected nodes are not necessarily the most central. Using a broad class of network models with weights and spatial constraints and four large data sets of transportation networks, we show that the unweighted projection of the structure of these networks can exhibit a significant fraction of anomalous nodes compared to a random null model. However, the weighted projection of these networks, compared with an appropriated null model, significantly reduces the fraction of anomalies observed, suggesting that centrality anomalies are a symptom of model over-simplification. Because lack of information-rich data is a common challenge when dealing with complex networks and can cause anomalies that misestimate the role of nodes in the system, we argue that sufficiently sophisticated models be used when anomalies are detected.Comment: 14 pages, including 9 figures. APS style. Accepted for publication in New Journal of Physic

    Explainable Deep Learning

    Get PDF
    Il grande successo che il Deep Learning ha ottenuto in ambiti strategici per la nostra società quali l'industria, la difesa, la medicina etc., ha portanto sempre più realtà a investire ed esplorare l'utilizzo di questa tecnologia. Ormai si possono trovare algoritmi di Machine Learning e Deep Learning quasi in ogni ambito della nostra vita. Dai telefoni, agli elettrodomestici intelligenti fino ai veicoli che guidiamo. Quindi si può dire che questa tecnologia pervarsiva è ormai a contatto con le nostre vite e quindi dobbiamo confrontarci con essa. Da questo nasce l’eXplainable Artificial Intelligence o XAI, uno degli ambiti di ricerca che vanno per la maggiore al giorno d'oggi in ambito di Deep Learning e di Intelligenza Artificiale. Il concetto alla base di questo filone di ricerca è quello di rendere e/o progettare i nuovi algoritmi di Deep Learning in modo che siano affidabili, interpretabili e comprensibili all'uomo. Questa necessità è dovuta proprio al fatto che le reti neurali, modello matematico che sta alla base del Deep Learning, agiscono come una scatola nera, rendendo incomprensibile all'uomo il ragionamento interno che compiono per giungere ad una decisione. Dato che stiamo delegando a questi modelli matematici decisioni sempre più importanti, integrandole nei processi più delicati della nostra società quali, ad esempio, la diagnosi medica, la guida autonoma o i processi di legge, è molto importante riuscire a comprendere le motivazioni che portano questi modelli a produrre determinati risultati. Il lavoro presentato in questa tesi consiste proprio nello studio e nella sperimentazione di algoritmi di Deep Learning integrati con tecniche di Intelligenza Artificiale simbolica. Questa integrazione ha un duplice scopo: rendere i modelli più potenti, consentendogli di compiere ragionamenti o vincolandone il comportamento in situazioni complesse, e renderli interpretabili. La tesi affronta due macro argomenti: le spiegazioni ottenute grazie all'integrazione neuro-simbolica e lo sfruttamento delle spiegazione per rendere gli algoritmi di Deep Learning più capaci o intelligenti. Il primo macro argomento si concentra maggiormente sui lavori svolti nello sperimentare l'integrazione di algoritmi simbolici con le reti neurali. Un approccio è stato quelli di creare un sistema per guidare gli addestramenti delle reti stesse in modo da trovare la migliore combinazione di iper-parametri per automatizzare la progettazione stessa di queste reti. Questo è fatto tramite l'integrazione di reti neurali con la Programmazione Logica Probabilistica (PLP) che consente di sfruttare delle regole probabilistiche indotte dal comportamento delle reti durante la fase di addestramento o ereditate dall'esperienza maturata dagli esperti del settore. Queste regole si innescano allo scatenarsi di un problema che il sistema rileva durate l'addestramento della rete. Questo ci consente di ottenere una spiegazione di cosa è stato fatto per migliorare l'addestramento una volta identificato un determinato problema. Un secondo approccio è stato quello di far cooperare sistemi logico-probabilistici con reti neurali per la diagnosi medica da fonti di dati eterogenee. La seconda tematica affrontata in questa tesi tratta lo sfruttamento delle spiegazioni che possiamo ottenere dalle rete neurali. In particolare, queste spiegazioni sono usate per creare moduli di attenzione che aiutano a vincolare o a guidare le reti neurali portandone ad avere prestazioni migliorate. Tutti i lavori sviluppati durante il dottorato e descritti in questa tesi hanno portato alle pubblicazioni elencate nel Capitolo 14.2.The great success that Machine and Deep Learning has achieved in areas that are strategic for our society such as industry, defence, medicine, etc., has led more and more realities to invest and explore the use of this technology. Machine Learning and Deep Learning algorithms and learned models can now be found in almost every area of our lives. From phones to smart home appliances, to the cars we drive. So it can be said that this pervasive technology is now in touch with our lives, and therefore we have to deal with it. This is why eXplainable Artificial Intelligence or XAI was born, one of the research trends that are currently in vogue in the field of Deep Learning and Artificial Intelligence. The idea behind this line of research is to make and/or design the new Deep Learning algorithms so that they are interpretable and comprehensible to humans. This necessity is due precisely to the fact that neural networks, the mathematical model underlying Deep Learning, act like a black box, making the internal reasoning they carry out to reach a decision incomprehensible and untrustable to humans. As we are delegating more and more important decisions to these mathematical models, it is very important to be able to understand the motivations that lead these models to make certain decisions. This is because we have integrated them into the most delicate processes of our society, such as medical diagnosis, autonomous driving or legal processes. The work presented in this thesis consists in studying and testing Deep Learning algorithms integrated with symbolic Artificial Intelligence techniques. This integration has a twofold purpose: to make the models more powerful, enabling them to carry out reasoning or constraining their behaviour in complex situations, and to make them interpretable. The thesis focuses on two macro topics: the explanations obtained through neuro-symbolic integration and the exploitation of explanations to make the Deep Learning algorithms more capable or intelligent. The neuro-symbolic integration was addressed twice, by experimenting with the integration of symbolic algorithms with neural networks. A first approach was to create a system to guide the training of the networks themselves in order to find the best combination of hyper-parameters to automate the design of these networks. This is done by integrating neural networks with Probabilistic Logic Programming (PLP). This integration makes it possible to exploit probabilistic rules tuned by the behaviour of the networks during the training phase or inherited from the experience of experts in the field. These rules are triggered when a problem occurs during network training. This generates an explanation of what was done to improve the training once a particular issue was identified. A second approach was to make probabilistic logic systems cooperate with neural networks for medical diagnosis on heterogeneous data sources. The second topic addressed in this thesis concerns the exploitation of explanations. In particular, the explanations one can obtain from neural networks are used in order to create attention modules that help in constraining and improving the performance of neural networks. All works developed during the PhD and described in this thesis have led to the publications listed in Chapter 14.2

    An Application Of Artificial Immune System In A Wastewater Treatment Plant

    Get PDF
    Guaranteeing the continuity and the quality of services in network plants is a key issue in the research area of asset management. Especially when the plants are located in a wide area where machines are not continuously monitored by the operators. In particular, the pervasive adoption of smart sensors could be able to develop intelligent maintenance system through an elaboration of data coming from the machines: this data could be processed by diagnostics algorithms to warn preventively the fault status of the components or machines monitored. The algorithms’ structure is contained in a multiple system of agents that have different tasks to manage both the single machine and the information exchanged within the whole system. This paper aims to present an application of Artificial Immune System defining, for each plant section, the kind of agents employed and the related sensors that must be adopted to collect the useful data. In order to provide a practical example, the structure of an Artificial Immune System has been implemented in a wastewater treatment plant where the agents are tested with noteworthy results. © 20164928556
    • …
    corecore