24,324 research outputs found

    Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs

    Full text link
    Unsupervised anomaly detection in Brain MRIs aims to identify abnormalities as outliers from a healthy training distribution. Reconstruction-based approaches that use generative models to learn to reconstruct healthy brain anatomy are commonly used for this task. Diffusion models are an emerging class of deep generative models that show great potential regarding reconstruction fidelity. However, they face challenges in preserving intensity characteristics in the reconstructed images, limiting their performance in anomaly detection. To address this challenge, we propose to condition the denoising mechanism of diffusion models with additional information about the image to reconstruct coming from a latent representation of the noise-free input image. This conditioning enables high-fidelity reconstruction of healthy brain structures while aligning local intensity characteristics of input-reconstruction pairs. We evaluate our method's reconstruction quality, domain adaptation features and finally segmentation performance on publicly available data sets with various pathologies. Using our proposed conditioning mechanism we can reduce the false-positive predictions and enable a more precise delineation of anomalies which significantly enhances the anomaly detection performance compared to established state-of-the-art approaches to unsupervised anomaly detection in brain MRI. Furthermore, our approach shows promise in domain adaptation across different MRI acquisitions and simulated contrasts, a crucial property of general anomaly detection methods.Comment: Preprin

    Zero-Shot Anomaly Detection without Foundation Models

    Full text link
    Anomaly detection (AD) tries to identify data instances that deviate from the norm in a given data set. Since data distributions are subject to distribution shifts, our concept of ``normality" may also drift, raising the need for zero-shot adaptation approaches for anomaly detection. However, the fact that current zero-shot AD methods rely on foundation models that are restricted in their domain (natural language and natural images), are costly, and oftentimes proprietary, asks for alternative approaches. In this paper, we propose a simple and highly effective zero-shot AD approach compatible with a variety of established AD methods. Our solution relies on training an off-the-shelf anomaly detector (such as a deep SVDD) on a set of inter-related data distributions in combination with batch normalization. This simple recipe--batch normalization plus meta-training--is a highly effective and versatile tool. Our results demonstrate the first zero-shot anomaly detection results for tabular data and SOTA zero-shot AD results for image data from specialized domains.Comment: anomaly detection, zero-shot learning, batch normalizatio

    2nd Place Winning Solution for the CVPR2023 Visual Anomaly and Novelty Detection Challenge: Multimodal Prompting for Data-centric Anomaly Detection

    Full text link
    This technical report introduces the winning solution of the team Segment Any Anomaly for the CVPR2023 Visual Anomaly and Novelty Detection (VAND) challenge. Going beyond uni-modal prompt, e.g., language prompt, we present a novel framework, i.e., Segment Any Anomaly + (SAA++), for zero-shot anomaly segmentation with multi-modal prompts for the regularization of cascaded modern foundation models. Inspired by the great zero-shot generalization ability of foundation models like Segment Anything, we first explore their assembly (SAA) to leverage diverse multi-modal prior knowledge for anomaly localization. Subsequently, we further introduce multimodal prompts (SAA++) derived from domain expert knowledge and target image context to enable the non-parameter adaptation of foundation models to anomaly segmentation. The proposed SAA++ model achieves state-of-the-art performance on several anomaly segmentation benchmarks, including VisA and MVTec-AD, in the zero-shot setting. We will release the code of our winning solution for the CVPR2023 VAN.Comment: The first two author contribute equally. CVPR workshop challenge report. arXiv admin note: substantial text overlap with arXiv:2305.1072

    Tiresias: Online Anomaly Detection for Hierarchical Operational Network Data

    Full text link
    Operational network data, management data such as customer care call logs and equipment system logs, is a very important source of information for network operators to detect problems in their networks. Unfortunately, there is lack of efficient tools to automatically track and detect anomalous events on operational data, causing ISP operators to rely on manual inspection of this data. While anomaly detection has been widely studied in the context of network data, operational data presents several new challenges, including the volatility and sparseness of data, and the need to perform fast detection (complicating application of schemes that require offline processing or large/stable data sets to converge). To address these challenges, we propose Tiresias, an automated approach to locating anomalous events on hierarchical operational data. Tiresias leverages the hierarchical structure of operational data to identify high-impact aggregates (e.g., locations in the network, failure modes) likely to be associated with anomalous events. To accommodate different kinds of operational network data, Tiresias consists of an online detection algorithm with low time and space complexity, while preserving high detection accuracy. We present results from two case studies using operational data collected at a large commercial IP network operated by a Tier-1 ISP: customer care call logs and set-top box crash logs. By comparing with a reference set verified by the ISP's operational group, we validate that Tiresias can achieve >94% accuracy in locating anomalies. Tiresias also discovered several previously unknown anomalies in the ISP's customer care cases, demonstrating its effectiveness

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated
    • …
    corecore