2,646 research outputs found

    The model of an anomaly detector for HiLumi LHC magnets based on Recurrent Neural Networks and adaptive quantization

    Full text link
    This paper focuses on an examination of an applicability of Recurrent Neural Network models for detecting anomalous behavior of the CERN superconducting magnets. In order to conduct the experiments, the authors designed and implemented an adaptive signal quantization algorithm and a custom GRU-based detector and developed a method for the detector parameters selection. Three different datasets were used for testing the detector. Two artificially generated datasets were used to assess the raw performance of the system whereas the 231 MB dataset composed of the signals acquired from HiLumi magnets was intended for real-life experiments and model training. Several different setups of the developed anomaly detection system were evaluated and compared with state-of-the-art OC-SVM reference model operating on the same data. The OC-SVM model was equipped with a rich set of feature extractors accounting for a range of the input signal properties. It was determined in the course of the experiments that the detector, along with its supporting design methodology, reaches F1 equal or very close to 1 for almost all test sets. Due to the profile of the data, the best_length setup of the detector turned out to perform the best among all five tested configuration schemes of the detection system. The quantization parameters have the biggest impact on the overall performance of the detector with the best values of input/output grid equal to 16 and 8, respectively. The proposed solution of the detection significantly outperformed OC-SVM-based detector in most of the cases, with much more stable performance across all the datasets.Comment: Related to arXiv:1702.0083

    Behavioral Analysis for Virtualized Network Functions : A SOM-based Approach

    Get PDF
    In this paper, we tackle the problem of detecting anomalous behaviors in a virtualized infrastructure for network function virtualization, proposing to use self-organizing maps for analyzing historical data available through a data center. We propose a joint analysis of system-level metrics, mostly related to resource consumption patterns of the hosted virtual machines, as available through the virtualized infrastructure monitoring system, and the application-level metrics published by individual virtualized network functions through their own monitoring subsystems. Experimental results, obtained by processing real data from one of the NFV data centers of the Vodafone network operator, show that our technique is able to identify specific points in space and time of the recent evolution of the monitored infrastructure that are worth to be investigated by a human operator in order to keep the system running under expected conditions

    Mining and visualizing uncertain data objects and named data networking traffics by fuzzy self-organizing map

    Get PDF
    Uncertainty is widely spread in real-world data. Uncertain data-in computer science-is typically found in the area of sensor networks where the sensors sense the environment with certain error. Mining and visualizing uncertain data is one of the new challenges that face uncertain databases. This paper presents a new intelligent hybrid algorithm that applies fuzzy set theory into the context of the Self-Organizing Map to mine and visualize uncertain objects. The algorithm is tested in some benchmark problems and the uncertain traffics in Named Data Networking (NDN). Experimental results indicate that the proposed algorithm is precise and effective in terms of the applied performance criteria.Peer ReviewedPostprint (published version

    Behavioral analysis for virtualized network functions: A som-based approach

    Get PDF
    In this paper, we tackle the problem of detecting anomalous behaviors in a virtualized infrastructure for network function virtualization, proposing to use self-organizing maps for analyzing historical data available through a data center. We propose a joint analysis of system-level metrics, mostly related to resource consumption patterns of the hosted virtual machines, as available through the virtualized infrastructure monitoring system, and the application-level metrics published by individual virtualized network functions through their own monitoring subsystems. Experimental results, obtained by processing real data from one of the NFV data centers of the Vodafone network operator, show that our technique is able to identify specific points in space and time of the recent evolution of the monitored infrastructure that are worth to be investigated by a human operator in order to keep the system running under expected conditions
    • …
    corecore