11,467 research outputs found
Mechanical behavior of black anodic films on 7175 aluminium alloy for space applications
Because of their low outgassing and their thermo-optical properties, black anodized aluminium parts are often used near optical instruments to manage thermal control in space applications. However, critical cases of flaking of the film were observed after simulated thermal ageing. To understand the mechanisms leading to flaking, the influence of the initial porosity of the film on its mechanical behavior during and after the black anodizing process has been investigated. The decrease of limit tensile stress with the porosity, the coloring and the sealing combined to thermal stresses due to the difference of thermal expansion coefficients between film and substrate have been shown to cause crazing in articular conditions. For high initial porosity films, thermal cycling ageing has a detrimental influence on the adhesion measured by scratchtesting. Numerical simulation has been used to simulate the combined effects of thermal stresses and film cracking on the stress field at the interface
Method of plating copper on aluminum Patent
Method of plating copper on aluminum to permit conventional soldering of structural aluminum bodie
The effects of carboxylic acids in aluminum anodizing
Hard-anodized alumina coatings were formed in sulfuric acid at low temperature and high current density in the presence of carboxylic acid additives. Citric acid, trimesic acid, mellitic acid and ethylenediaminetetraacetic acid (EDTA) were utilized in varying concentrations. The additives were chosen for their capacity to form complexes with tri-valent aluminum and hence impart chemical stability to the coatings. The coatings were sealed in boiling water, and corrosion resistance was observed in a high pH solution of potassium hydroxide. The coatings were examined using scanning electron microscopy (SEM) to assess coating thickness and pore dimensions. Thicker coatings were produced when the additive inhibited oxide coating dissolution, increasing corrosion resistance. Overall, carboxylic acid additives showed a positive impact on corrosion resistance when coupled with sealants. More research in this field could improve products used in cleaning and cooking environments to withstand conditions of high and low pH
Investigations into the coefficient of thermal expansion of porous films prepared on AA7175 T7351 by anodizing in sulphuric acid electrolyte
The aim of this study was to investigate the Coefficient of Thermal Expansion (CTE) of anodic films on 7175 T7351 aluminium alloy and to evaluate the influence of the film characteristics on this value. In particular, effects of porosity and post-treatments, such as coloring and sealing, were studied. Beam bending analysis was used as the experimental method and a numerical finite element model was developed to verify theoretical relationships hypotheses. The values determined and the choice of experimental method were then validated by comparing the experimental cracking temperature of anodic films with a theoretical value directly depending on the previously determined CTE
Reliable irogane alloys and niiro patination—further study of production and application to jewelry
Japanese metalworkers use a wide range of irogane alloys (shakudo, shibuichi), which are colored with a single patination solution (niiro eki). This approach allows different alloys to be combined in one piece and patinated, producing a multi-colored piece of metalwork. At present the niiro patination process is unreliable. In this study we develop a deeper understanding of the effect of patination solution ingredients on color. We have tested a synthetic niiro solution, comparing the color results with traditional niiro solution patination. Surface products have been analyzed to determine how they are influenced by both the niiro solution and cleaning procedures during patination. A large range of shibuichi and shakudo alloys have been produced to determine the full color pallette. This work also explores the use of alternative processes for the patination of irogane alloys, examining the effect of laser marking and anodizing on irogane alloys
Titanium scaffolds with multi-scale porosity obtained by controlled chemical and electrochemical treatments of porous solids from PM space holder technique
Junta de Andalucía (Spain) / FEDER (EU), through the project Ref. P12-TEP-140
The corrosion protection of 2219-T87 aluminum by anodizing
Various types of anodizing coatings were studied for 2219-T87 aluminum. These include both type II and type III anodized coats which were water sealed and a newly developed and proprietary Magnaplate HCR (TM) coat. Results indicate that type II anodizing is not much superior to type II anodizing as far as corrosion protection for 2219-T87 aluminum is concerned. Magnaplate HCR (TM) coatings should provide superior corrosion protection over an extended period of time using a coating thickness of 51 microns (2.0 mils)
- …
