54 research outputs found

    The automatic processing of multiword expressions in Irish

    Get PDF
    It is well-documented that Multiword Expressions (MWEs) pose a unique challenge to a variety of NLP tasks such as machine translation, parsing, information retrieval, and more. For low-resource languages such as Irish, these challenges can be exacerbated by the scarcity of data, and a lack of research in this topic. In order to improve handling of MWEs in various NLP tasks for Irish, this thesis will address both the lack of resources specifically targeting MWEs in Irish, and examine how these resources can be applied to said NLP tasks. We report on the creation and analysis of a number of lexical resources as part of this PhD research. Ilfhocail, a lexicon of Irish MWEs, is created through extract- ing MWEs from other lexical resources such as dictionaries. A corpus annotated with verbal MWEs in Irish is created for the inclusion of Irish in the PARSEME Shared Task 1.2. Additionally, MWEs were tagged in a bilingual EN-GA corpus for inclusion in experiments in machine translation. For the purposes of annotation, a categorisation scheme for nine categories of MWEs in Irish is created, based on combining linguistic analysis on these types of constructions and cross-lingual frameworks for defining MWEs. A case study in applying MWEs to NLP tasks is undertaken, with the exploration of incorporating MWE information while training Neural Machine Translation systems. Finally, the topic of automatic identification of Irish MWEs is explored, documenting the training of a system capable of automatically identifying Irish MWEs from a variety of categories, and the challenges associated with developing such a system. This research contributes towards a greater understanding of Irish MWEs and their applications in NLP, and provides a foundation for future work in exploring other methods for the automatic discovery and identification of Irish MWEs, and further developing the MWE resources described above

    CLARIN

    Get PDF
    The book provides a comprehensive overview of the Common Language Resources and Technology Infrastructure – CLARIN – for the humanities. It covers a broad range of CLARIN language resources and services, its underlying technological infrastructure, the achievements of national consortia, and challenges that CLARIN will tackle in the future. The book is published 10 years after establishing CLARIN as an Europ. Research Infrastructure Consortium

    CLARIN. The infrastructure for language resources

    Get PDF
    CLARIN, the "Common Language Resources and Technology Infrastructure", has established itself as a major player in the field of research infrastructures for the humanities. This volume provides a comprehensive overview of the organization, its members, its goals and its functioning, as well as of the tools and resources hosted by the infrastructure. The many contributors representing various fields, from computer science to law to psychology, analyse a wide range of topics, such as the technology behind the CLARIN infrastructure, the use of CLARIN resources in diverse research projects, the achievements of selected national CLARIN consortia, and the challenges that CLARIN has faced and will face in the future. The book will be published in 2022, 10 years after the establishment of CLARIN as a European Research Infrastructure Consortium by the European Commission (Decision 2012/136/EU)

    B!SON: A Tool for Open Access Journal Recommendation

    Get PDF
    Finding a suitable open access journal to publish scientific work is a complex task: Researchers have to navigate a constantly growing number of journals, institutional agreements with publishers, funders’ conditions and the risk of Predatory Publishers. To help with these challenges, we introduce a web-based journal recommendation system called B!SON. It is developed based on a systematic requirements analysis, built on open data, gives publisher-independent recommendations and works across domains. It suggests open access journals based on title, abstract and references provided by the user. The recommendation quality has been evaluated using a large test set of 10,000 articles. Development by two German scientific libraries ensures the longevity of the project

    Graph-based broad-coverage semantic parsing

    Get PDF
    Many broad-coverage meaning representations can be characterized as directed graphs, where nodes represent semantic concepts and directed edges represent semantic relations among the concepts. The task of semantic parsing is to generate such a meaning representation from a sentence. It is quite natural to adopt a graph-based approach for parsing, where nodes are identified conditioning on the individual words, and edges are labeled conditioning on the pairs of nodes. However, there are two issues with applying this simple and interpretable graph-based approach for semantic parsing: first, the anchoring of nodes to words can be implicit and non-injective in several formalisms (Oepen et al., 2019, 2020). This means we do not know which nodes should be generated from which individual word and how many of them. Consequently, it makes a probabilistic formulation of the training objective problematical; second, graph-based parsers typically predict edge labels independent from each other. Such an independence assumption, while being sensible from an algorithmic point of view, could limit the expressiveness of statistical modeling. Consequently, it might fail to capture the true distribution of semantic graphs. In this thesis, instead of a pipeline approach to obtain the anchoring, we propose to model the implicit anchoring as a latent variable in a probabilistic model. We induce such a latent variable jointly with the graph-based parser in an end-to-end differentiable training. In particular, we test our method on Abstract Meaning Representation (AMR) parsing (Banarescu et al., 2013). AMR represents sentence meaning with a directed acyclic graph, where the anchoring of nodes to words is implicit and could be many-to-one. Initially, we propose a rule-based system that circumvents the many-to-one anchoring by combing nodes in some pre-specified subgraphs in AMR and treats the alignment as a latent variable. Next, we remove the need for such a rule-based system by treating both graph segmentation and alignment as latent variables. Still, our graph-based parsers are parameterized by neural modules that require gradient-based optimization. Consequently, training graph-based parsers with our discrete latent variables can be challenging. By combing deep variational inference and differentiable sampling, our models can be trained end-to-end. To overcome the limitation of graph-based parsing and capture interdependency in the output, we further adopt iterative refinement. Starting with an output whose parts are independently predicted, we iteratively refine it conditioning on the previous prediction. We test this method on semantic role labeling (Gildea and Jurafsky, 2000). Semantic role labeling is the task of predicting the predicate-argument structure. In particular, semantic roles between the predicate and its arguments need to be labeled, and those semantic roles are interdependent. Overall, our refinement strategy results in an effective model, outperforming strong factorized baseline models

    Empirical Evaluation Methodology for Target Dependent Sentiment Analysis

    Get PDF
    The area of sentiment analysis has been around for at least 20 years in one form or another. In which time, it has had many and varied applications ranging from predicting film successes to social media analytics, and it has gained widespread use via selling it as a tool through application programming interfaces. The focus of this thesis is not on the application side but rather on novel evaluation methodology for the most fine grained form of sentiment analysis, target dependent sentiment analysis (TDSA). TDSA has seen a recent upsurge but to date most research only evaluates on very similar datasets which limits the conclusions that can be drawn from it. Further, most research only marginally improves results, chasing the State Of The Art (SOTA), but these prior works cannot empirically show where their improvements come from beyond overall metrics and small qualitative examples. By performing an extensive literature review on the different granularities of sentiment analysis, coarse (document level) to fine grained, a new and extended definition of fine grained sentiment analysis, the hextuple, is created which removes ambiguities that can arise from the context. In addition, examples from the literature will be provided where studies are not able to be replicated nor reproduced. This thesis includes the largest empirical analysis on six English datasets across multiple existing neural and non-neural methods, allowing for the methods to be tested for generalisability. In performing these experiments factors such as dataset size and sentiment class distribution determine whether neural or non-neural approaches are best, further finding that no method is generalisable. By formalising, analysing, and testing prior TDSA error splits, newly created error splits, and a new TDSA specific metric, a new empirical evaluation methodology has been created for TDSA. This evaluation methodology is then applied to multiple case studies to empirically justify improvements, such as position encoding, and show how contextualised word representation improves TDSA methods. From the first reproduction study in TDSA, it is believed that random seeds significantly affecting the neural method is the reason behind the difficulty in reproducing or replicating the original study results. Thus highlighting empirically for the first in TDSA the need for reporting multiple run results for neural methods, to allow for better reporting and improved evaluation. This thesis is fully reproducible through the codebases and Jupyter notebooks referenced, making it an executable thesis

    Proceedings of the 3rd Swiss conference on barrier-free communication (BfC 2020)

    Get PDF
    • 

    corecore