13 research outputs found

    Named Entity Recognition in Electronic Health Records Using Transfer Learning Bootstrapped Neural Networks

    Full text link
    Neural networks (NNs) have become the state of the art in many machine learning applications, especially in image and sound processing [1]. The same, although to a lesser extent [2,3], could be said in natural language processing (NLP) tasks, such as named entity recognition. However, the success of NNs remains dependent on the availability of large labelled datasets, which is a significant hurdle in many important applications. One such case are electronic health records (EHRs), which are arguably the largest source of medical data, most of which lies hidden in natural text [4,5]. Data access is difficult due to data privacy concerns, and therefore annotated datasets are scarce. With scarce data, NNs will likely not be able to extract this hidden information with practical accuracy. In our study, we develop an approach that solves these problems for named entity recognition, obtaining 94.6 F1 score in I2B2 2009 Medical Extraction Challenge [6], 4.3 above the architecture that won the competition. Beyond the official I2B2 challenge, we further achieve 82.4 F1 on extracting relationships between medical terms. To reach this state-of-the-art accuracy, our approach applies transfer learning to leverage on datasets annotated for other I2B2 tasks, and designs and trains embeddings that specially benefit from such transfer.Comment: 11 pages, 4 figures, 8 table

    Privacy-Preserving Predictive Modeling: Harmonization of Contextual Embeddings From Different Sources

    Get PDF
    Background: Data sharing has been a big challenge in biomedical informatics because of privacy concerns. Contextual embedding models have demonstrated a very strong representative capability to describe medical concepts (and their context), and they have shown promise as an alternative way to support deep-learning applications without the need to disclose original data. However, contextual embedding models acquired from individual hospitals cannot be directly combined because their embedding spaces are different, and naive pooling renders combined embeddings useless. Objective: The aim of this study was to present a novel approach to address these issues and to promote sharing representation without sharing data. Without sacrificing privacy, we also aimed to build a global model from representations learned from local private data and synchronize information from multiple sources. Methods: We propose a methodology that harmonizes different local contextual embeddings into a global model. We used Word2Vec to generate contextual embeddings from each source and Procrustes to fuse different vector models into one common space by using a list of corresponding pairs as anchor points. We performed prediction analysis with harmonized embeddings. Results: We used sequential medical events extracted from the Medical Information Mart for Intensive Care III database to evaluate the proposed methodology in predicting the next likely diagnosis of a new patient using either structured data or unstructured data. Under different experimental scenarios, we confirmed that the global model built from harmonized local models achieves a more accurate prediction than local models and global models built from naive pooling. Conclusions: Such aggregation of local models using our unique harmonization can serve as the proxy for a global model, combining information from a wide range of institutions and information sources. It allows information unique to a certain hospital to become available to other sites, increasing the fluidity of information flow in health care

    The Impact of Automatic Pre-annotation in Clinical Note Data Element Extraction - the CLEAN Tool

    Full text link
    Objective. Annotation is expensive but essential for clinical note review and clinical natural language processing (cNLP). However, the extent to which computer-generated pre-annotation is beneficial to human annotation is still an open question. Our study introduces CLEAN (CLinical note rEview and ANnotation), a pre-annotation-based cNLP annotation system to improve clinical note annotation of data elements, and comprehensively compares CLEAN with the widely-used annotation system Brat Rapid Annotation Tool (BRAT). Materials and Methods. CLEAN includes an ensemble pipeline (CLEAN-EP) with a newly developed annotation tool (CLEAN-AT). A domain expert and a novice user/annotator participated in a comparative usability test by tagging 87 data elements related to Congestive Heart Failure (CHF) and Kawasaki Disease (KD) cohorts in 84 public notes. Results. CLEAN achieved higher note-level F1-score (0.896) over BRAT (0.820), with significant difference in correctness (P-value < 0.001), and the mostly related factor being system/software (P-value < 0.001). No significant difference (P-value 0.188) in annotation time was observed between CLEAN (7.262 minutes/note) and BRAT (8.286 minutes/note). The difference was mostly associated with note length (P-value < 0.001) and system/software (P-value 0.013). The expert reported CLEAN to be useful/satisfactory, while the novice reported slight improvements. Discussion. CLEAN improves the correctness of annotation and increases usefulness/satisfaction with the same level of efficiency. Limitations include untested impact of pre-annotation correctness rate, small sample size, small user size, and restrictedly validated gold standard. Conclusion. CLEAN with pre-annotation can be beneficial for an expert to deal with complex annotation tasks involving numerous and diverse target data elements

    SemClinBr -- a multi institutional and multi specialty semantically annotated corpus for Portuguese clinical NLP tasks

    Full text link
    The high volume of research focusing on extracting patient's information from electronic health records (EHR) has led to an increase in the demand for annotated corpora, which are a very valuable resource for both the development and evaluation of natural language processing (NLP) algorithms. The absence of a multi-purpose clinical corpus outside the scope of the English language, especially in Brazilian Portuguese, is glaring and severely impacts scientific progress in the biomedical NLP field. In this study, we developed a semantically annotated corpus using clinical texts from multiple medical specialties, document types, and institutions. We present the following: (1) a survey listing common aspects and lessons learned from previous research, (2) a fine-grained annotation schema which could be replicated and guide other annotation initiatives, (3) a web-based annotation tool focusing on an annotation suggestion feature, and (4) both intrinsic and extrinsic evaluation of the annotations. The result of this work is the SemClinBr, a corpus that has 1,000 clinical notes, labeled with 65,117 entities and 11,263 relations, and can support a variety of clinical NLP tasks and boost the EHR's secondary use for the Portuguese language

    Clinical text data in machine learning: Systematic review

    Get PDF
    Background: Clinical narratives represent the main form of communication within healthcare providing a personalized account of patient history and assessments, offering rich information for clinical decision making. Natural language processing (NLP) has repeatedly demonstrated its feasibility to unlock evidence buried in clinical narratives. Machine learning can facilitate rapid development of NLP tools by leveraging large amounts of text data. Objective: The main aim of this study is to provide systematic evidence on the properties of text data used to train machine learning approaches to clinical NLP. We also investigate the types of NLP tasks that have been supported by machine learning and how they can be applied in clinical practice. Methods: Our methodology was based on the guidelines for performing systematic reviews. In August 2018, we used PubMed, a multi-faceted interface, to perform a literature search against MEDLINE. We identified a total of 110 relevant studies and extracted information about the text data used to support machine learning, the NLP tasks supported and their clinical applications. The data properties considered included their size, provenance, collection methods, annotation and any relevant statistics. Results: The vast majority of datasets used to train machine learning models included only hundreds or thousands of documents. Only 10 studies used tens of thousands of documents with a handful of studies utilizing more. Relatively small datasets were utilized for training even when much larger datasets were available. The main reason for such poor data utilization is the annotation bottleneck faced by supervised machine learning algorithms. Active learning was explored to iteratively sample a subset of data for manual annotation as a strategy for minimizing the annotation effort while maximizing predictive performance of the model. Supervised learning was successfully used where clinical codes integrated with free text notes into electronic health records were utilized as class labels. Similarly, distant supervision was used to utilize an existing knowledge base to automatically annotate raw text. Where manual annotation was unavoidable, crowdsourcing was explored, but it remains unsuitable due to sensitive nature of data considered. Beside the small volume, training data were typically sourced from a small number of institutions, thus offering no hard evidence about the transferability of machine learning models. The vast majority of studies focused on the task of text classification. Most commonly, the classification results were used to support phenotyping, prognosis, care improvement, resource management and surveillance. Conclusions: We identified the data annotation bottleneck as one of the key obstacles to machine learning approaches in clinical NLP. Active learning and distant supervision were explored as a way of saving the annotation efforts. Future research in this field would benefit from alternatives such as data augmentation and transfer learning, or unsupervised learning, which does not require data annotation

    Doctor of Philosophy

    Get PDF
    dissertationThe primary objective of cancer registries is to capture clinical care data of cancer populations and aid in prevention, allow early detection, determine prognosis, and assess quality of various treatments and interventions. Furthermore, the role of cancer registries is paramount in supporting cancer epidemiological studies and medical research. Existing cancer registries depend mostly on humans, known as Cancer Tumor Registrars (CTRs), to conduct manual abstraction of the electronic health records to find reportable cancer cases and extract other data elements required for regulatory reporting. This is often a time-consuming and laborious task prone to human error affecting quality, completeness and timeliness of cancer registries. Central state cancer registries take responsibility for consolidating data received from multiple sources for each cancer case and to assign the most accurate information. The Utah Cancer Registry (UCR) at the University of Utah, for instance, leads and oversees more than 70 cancer treatment facilities in the state of Utah to collect data for each diagnosed cancer case and consolidate multiple sources of information.Although software tools helping with the manual abstraction process exist, they mainly focus on cancer case findings based on pathology reports and do not support automatic extraction of other data elements such as TNM cancer stage information, an important prognostic factor required before initiating clinical treatment. In this study, I present novel applications of natural language processing (NLP) and machine learning (ML) to automatically extract clinical and pathological TNM stage information from unconsolidated clinical records of cancer patients available at the central Utah Cancer Registry. To further support CTRs in their manual efforts, I demonstrate a new approach based on machine learning to consolidate TNM stages from multiple records at the patient level
    corecore