84 research outputs found

    Millimeter Wave Systems for Wireless Cellular Communications

    Full text link
    This thesis considers channel estimation and multiuser (MU) data transmission for massive MIMO systems with fully digital/hybrid structures in mmWave channels. It contains three main contributions. In this thesis, we first propose a tone-based linear search algorithm to facilitate the estimation of angle-of-arrivals of the strongest components as well as scattering components of the users at the base station (BS) with fully digital structure. Our results show that the proposed maximum-ratio transmission (MRT) based on the strongest components can achieve a higher data rate than that of the conventional MRT, under the same mean squared errors (MSE). Second, we develop a low-complexity channel estimation and beamformer/precoder design scheme for hybrid mmWave systems. In addition, the proposed scheme applies to both non-sparse and sparse mmWave channel environments. We then leverage the proposed scheme to investigate the downlink achievable rate performance. The results show that the proposed scheme obtains a considerable achievable rate of fully digital systems. Taking into account the effect of various types of errors, we investigate the achievable rate performance degradation of the considered scheme. Third, we extend our proposed scheme to a multi-cell MU mmWave MIMO network. We derive the closed-form approximation of the normalized MSE of channel estimation under pilot contamination over Rician fading channels. Furthermore, we derive a tight closed-form approximation and the scaling law of the average achievable rate. Our results unveil that channel estimation errors, the intra-cell interference, and the inter-cell interference caused by pilot contamination over Rician fading channels can be efficiently mitigated by simply increasing the number of antennas equipped at the desired BS.Comment: Thesi

    Full-Duplex Wireless for 6G: Progress Brings New Opportunities and Challenges

    Full text link
    The use of in-band full-duplex (FD) enables nodes to simultaneously transmit and receive on the same frequency band, which challenges the traditional assumption in wireless network design. The full-duplex capability enhances spectral efficiency and decreases latency, which are two key drivers pushing the performance expectations of next-generation mobile networks. In less than ten years, in-band FD has advanced from being demonstrated in research labs to being implemented in standards and products, presenting new opportunities to utilize its foundational concepts. Some of the most significant opportunities include using FD to enable wireless networks to sense the physical environment, integrate sensing and communication applications, develop integrated access and backhaul solutions, and work with smart signal propagation environments powered by reconfigurable intelligent surfaces. However, these new opportunities also come with new challenges for large-scale commercial deployment of FD technology, such as managing self-interference, combating cross-link interference in multi-cell networks, and coexistence of dynamic time division duplex, subband FD and FD networks.Comment: 21 pages, 15 figures, accepted to an IEEE Journa

    Multi-User Holographic MIMO Surfaces: Channel Modeling and Spectral Efficiency Analysis

    Full text link
    The multi-user Holographic Multiple-Input and Multiple-Output Surface (MU-HMIMOS) paradigm, which is capable of realizing large continuous apertures with minimal power consumption, has been recently considered as an energyefficient solution for future wireless networks, offering increased flexibility in impacting electromagnetic (EM) wave propagation according to the desired communication, localization, and sensing objectives. The tractable channel modeling in MU-HMIMOS wireless systems is one of the most critical research challenges, mainly due to the coupling effect induced by the excessively large number of closely spaced patch antennas. In this paper, we focus on this challenge for the downlink of multi-user MIMO communications and extend an EM-compliant channel model to multiuser case, which is expressed in the wavenumber domain using the Fourier plane wave approximation. Based on the presented channel model, we investigate the spectral efficiency of maximumratio transmission and Zero-Forcing (ZF) precoding schemes. We also introduce a novel hardware efficient ZF precoder, leveraging Neumann series (NS) expansion to replace the required matrix inversion operation, which is very hard to be computed in the conventional way due to the extremely large number of patch antennas in the envisioned MU-HMIMOS communication systems. In comparison with the conventional independent and identical Rayleigh fading channels that ignore antenna coupling effects, the proposed EM-compliant channel model captures the mutual couplings induced by the very small antenna spacing. Our extensive performance evaluation results demonstrate that our theoretical performance expressions approximate sufficiently well ..
    • …
    corecore