1,056 research outputs found

    On mm-Wave Multi-path Clustering and Channel Modeling

    Get PDF
    Efficient and realistic mm-wave channel models are of vital importance for the development of novel mm-wave wireless technologies. Though many of the current 60 GHz channel models are based on the useful concept of multi-path clusters, only a limited number of 60 GHz channel measurements have been reported in the literature for this purpose. Therefore, there is still a need for further measurement based analyses of multi-path clustering in the 60 GHz band. This paper presents clustering results for a double-directional 60 GHz MIMO channel model. Based on these results, we derive a model which is validated with measured data. Statistical cluster parameters are evaluated and compared with existing channel models. It is shown that the cluster angular characteristics are closely related to the room geometry and environment, making it infeasible to model the delay and angular domains independently. We also show that when using ray tracing to model the channel, it is insufficient to only consider walls, ceiling, floor and tables; finer structures such as ceiling lamps, chairs and bookshelves need to be taken into account as well

    Experimental characterization of the radio channel for systems with large bandwidth and multiple antennas

    Get PDF
    [SPA] Cada día son necesarias comunicaciones mejores y más eficientes, con mayores anchos de banda y mayores tasas de transferencias de datos. Por un lado los sistemas de múltiples antenas, MIMO, surgieron como una técnica para optimizar el uso de la potencia y el espectro. Por otro lado, los sistemas Ultra-Wideband, UWB, han ganado recientemente el interés de la comunidad científica por su gran ancho de banda combinado con su baja potencia de transmisión. A la hora de diseñar y testear nuevos dispositivos de comunicaciones inalámbricas, es esencial poseer un conocimiento preciso del canal de propagación por el que se propagan dichas señales. Esta tesis, se basa en el modelado del canal de propagación para sistemas de gran ancho de banda y múltiples antenas desde un punto de vista experimental. Primeramente se presentan las mejoras y desarrollos realizados en el ámbito de los sistemas de medida del canal, dado que es necesario disponer de equipos adecuados y precisos para realizar adecuadas medidas del canal. Seguidamente, se analiza el canal MIMO-UWB en interiores. Se realiza un análisis en profundidad de varios parámetros, especialmente parámetros de una antena como las pérdidas de propagación, el factor de polarización cruzada o la dispersión del retardo. Finalmente, la tesis particulariza el análisis del canal en un entorno especial como es el caso de túneles. Se realiza un análisis experimental de parámetros de una antena como multi antena para luego evaluar las prestaciones que pueden brindar varias técnicas de diversidad como es en el dominio de la frecuencia, la polarización, el espacio o el tiempo.[ENG] Wireless communications have become essential in our society [Rappaport, 1996], [Parsons, 2000]. Nowadays, people need to be connected everywhere and at any time, and demand faster and enhanced communications every day. New applications requires higher data rates and, therefore, higher bandwidths. On the one hand, Multiple-Input Multiple-Output (MIMO) systems were proposed as one solution to achieve higher data rates and optimize the use of the spectrum. On the other hand, more recently, systems with an ultra large bandwidth, and particularly Ultra-Wideband (UWB) systems, have gained the interest of the scientific community. Such interest is owing to the extremely high data rates offered and its possible coexistence with existing systems due to the its low transmitted power. However, this improvement in mobile communications involves the development and testing of new wireless communications systems. Precise knowledge of the radio channel is an essential issue to design this new devices and, thus, reach such improvement in wireless communications. In general, the modeling of the radio channel can be undertaken in two main ways: Theoretically, where the channel is characterized by means of simulations and theoretical approaches. - Experimentally, where the radio channel is characterized by means of the analysis of measurements carried out in real scenarios. This thesis is mainly focused on the experimental characterization of the radio channel for systems with large bandwidth and multiple antennas (MIMO). However, characterizing experimentally the MIMO wideband channel implies the availability of adequate and accurate channel sounders.Universidad Politécnica de CartagenaUniversité des Sciences et Technologies de Lille (USTL)Programa de doctorado en Tecnologías de la Información y Comunicacione

    Terahertz Wireless Channels: A Holistic Survey on Measurement, Modeling, and Analysis

    Full text link
    Terahertz (0.1-10 THz) communications are envisioned as a key technology for sixth generation (6G) wireless systems. The study of underlying THz wireless propagation channels provides the foundations for the development of reliable THz communication systems and their applications. This article provides a comprehensive overview of the study of THz wireless channels. First, the three most popular THz channel measurement methodologies, namely, frequency-domain channel measurement based on a vector network analyzer (VNA), time-domain channel measurement based on sliding correlation, and time-domain channel measurement based on THz pulses from time-domain spectroscopy (THz-TDS), are introduced and compared. Current channel measurement systems and measurement campaigns are reviewed. Then, existing channel modeling methodologies are categorized into deterministic, stochastic, and hybrid approaches. State-of-the-art THz channel models are analyzed, and the channel simulators that are based on them are introduced. Next, an in-depth review of channel characteristics in the THz band is presented. Finally, open problems and future research directions for research studies on THz wireless channels for 6G are elaborated.Comment: to appear in IEEE Communications Surveys and Tutorial

    Measurement-Based Modeling of Wireless Propagation Channels - MIMO and UWB

    Get PDF
    Future wireless systems envision higher speeds and more reliable services but at the same time face challenges in terms of bandwidth being a limited resource. Two promising techniques that can provide an increased throughput without requiring additional bandwidth allocation are multiple-input multiple-output (MIMO) systems and ultra-wideband (UWB) systems. However, the performance of such systems is highly dependent on the properties of the wireless propagation channel, and an understanding of the channel is therefore crucial in the design of future wireless systems. Examples of such systems covered by this thesis are wireless personal area networks (papers I and II), vehicle-to-vehicle communications (paper III), board-to-board communications inside computers (paper IV) and sensor networks for industrial applications (paper V). Typically, channel models are used to evaluate the performance of different transmission and reception schemes. Channel modeling is the focus of this thesis, which contains a collection of papers that analyze and model the behavior of MIMO and UWB propagation channels. Paper I investigates the fading characteristics of wireless personal area networks (PANs), networks that typically involve human influence close to the antenna terminals. Based on extensive channel measurements using irregular antenna arrays, typical properties of PAN propagation channels are discussed and a model for the complete fading of a single link is presented. Paper II extends the model from paper I to a complete MIMO channel model. The paper combines the classical LOS model for MIMO with results from paper I by prescribing different fading statistics and mean power at the different antenna elements. The model is verified against measurement data and the paper also provides a parameterization for an example of a PAN scenario. Paper III presents a geometry-based stochastic MIMO model for vehicle-to-vehicle communications. The most important propagation effects are discussed based on the results from extensive channel measurements, and the modeling approach is motivated by the non-stationary behavior of such channels. The model distinguishes between diffuse contributions and those stemming from interaction with significant objects in the propagation channel, and the observed fading characteristics of the latter are stochastically accounted for in the model. Paper IV gives a characterization of UWB propagation channels inside desktop computer chassis. By studying measurement results from two different computers, it is concluded that the propagation channel only shows minor differences for different computers and positions within the chassis. It is also found out that the interference power produced by the computer is limited to certain subbands, suggesting that multiband UWB systems are more suitable for this type of applications. Paper V describes a UWB channel model based on the first UWB measurements in an industrial environment. Analyzing results from two different factory halls, it is concluded that energy arrives at the receiver in clusters, which motivates the use of a classical multi-cluster model to describe the channel impulse response. Parts of the results from this paper were also used as input to the channel model in the IEEE 802.15.4a UWB standardization work. In summary, the work within this thesis leads to an increased understanding of the behavior of wireless propagation channels for MIMO and UWB systems. By providing three detailed simulation models, two for MIMO and one for UWB, it can thus contribute to a more efficient design of the wireless communications systems of tomorrow

    60 GHz Wireless Propagation Channels: Characterization, Modeling and Evaluation

    Get PDF
    To be able to connect wirelessly to the internet is nowadays a part of everyday life and the number of wireless devices accessing wireless networks worldwide are increasing rapidly. However, with the increasing number of wireless devices and applications and the amount available bandwidth, spectrum shortage is an issue. A promising way to increase the amount of available spectrum is to utilize frequency bands in the mm-wave range of 30-300 GHz that previously have not been used for typical consumer applications. The 60 GHz band has been pointed out as a good candidate for short range, high data rate communications, as the amount of available bandwidth is at least 5 GHz worldwide, with most countries having 7 GHz of bandwidth available in this band. This large bandwidth is expected to allow for wireless communication with bit rates up to 7 Gbit/s, which can be compared to the typical WLAN systems of today that typically provide bit rates up to 0.6 Gbit/s. However, the performance of any wireless system is highly dependent on the properties and characteristics of the wireless propagation channel. This thesis focuses on indoor short range wireless propagation channels in the 60 GHz band and contains a collection of papers that characterizes, models and evaluates different aspects that are directly related to the propagation channel properties. Paper I investigates the directional properties of the indoor 60 GHz wireless radio channel based on a set of indoor measurements in a conference room. In the paper, the signal pathways and propagation mechanisms for the strongest paths are identified. The results show that first and second order interactions account for the major contribution of the received power. The results also show that finer structures, such as ceiling lamps, can be significant interacting objects. Paper II presents a cluster-based double-directional channel model for 60 GHz indoor multiple-input multiple-output (MIMO) systems. This paper is a direct continuation of the results in paper I. The model supports arbitrary antenna elements and array configurations and is validated against measurement data. The validation shows that the channel model is able to efficiently reproduce the statistical properties of the measured channels. The presented channel model is also compared with the 60 GHz channel models developed for the industry standards IEEE802.15.3c and IEEE802.11ad. Paper III characterizes the effect of shadowing due to humans and other objects. Measurements of the shadowing gain for human legs, metallic sheets, as well as metallic and plastic cylinders are presented. It is shown that the shadowing gain of these objects are fairly similar and that the shadowing due to the metal cylinder can be determined based on the geometrical theory of diffraction. Next, the shadowing due to a water-filled human body phantom is compared with the shadowing due to real humans. The results show that the water-filled phantom has shadowing properties similar to those of humans and is therefore suitable for use in 60 GHz human body shadowing measurements. Paper IV presents a novel way of estimating the cluster decay and fading. Previously, the cluster decay has usually been determined by performing a simple linear regression, without considering the effects of the noise floor and cluster fading. The paper presents an estimation method which takes these effects into account and jointly estimates both the cluster decay and cluster fading. It is shown that this estimation method can greatly improve the estimated parameters. Paper V evaluates the capacity improvement capability of spatial multiplexing and beamforming techniques for 60 GHz systems in an indoor environment. In this paper, beamforming refers to conventional gain focusing in the direction of the strongest propagation path. The paper uses a capacity metric that only depends on the multi-path richness of the propagation channel and the antenna aperture size. In the paper, it is shown that, when the link budget is limited due to electrically small antennas and long Tx-Rx separation distances, beamforming approximates the capacity of spatial multiplexing. However, spatial multiplexing is a worthwhile option when Rx SNR is favorable and a higher peak data rate is required. Paper VI describes different methods for the clustering of wireless multi-path components. In the literature, the clustering method that is predominantly used is the K-means algorithm, or a power-weighted version of K-means, called K-power means. In this paper, we point out that K-means is a special case of a Gaussian mixture model (GMM). The paper presents a clustering method based on a GMM. This method is able to handle arbitrary cluster spreads in the different dimensions better than the K-means algorithm. A power-weighted version of the GMM is also presented. In addition to this, a mixture model based on asymmetric Laplace distributions is also presented, with and without power-weighting. Paper VII is based on channel measurements in a small and a large room, where the Tx and Rx arrays have dual polarized elements. Using these measurements, the cross-polarization ratio (XPR) of the multi-path components are characterized. This gives valuable information on how the MPCs are affected by the propagation channel. A statistical description of the XPR is also needed for the development of a propagation channel model that supports polarization. The paper also investigates the eigenvalue spreads for single and dual polarized elements. Furthermore, the measurements include LOS and NLOS measurement, where the NLOS scenarios include water-filled human presented in paper III. The results show that the capacity can be greatly improved if dual-polarized elements are used, and that the XPR values are in general higher compared to lower frequencies

    306-321 GHz Wideband Channel Measurement and Analysis in an Indoor Lobby

    Full text link
    The Terahertz (0.1-10 THz) band has been envisioned as one of the promising spectrum bands to support ultra-broadband sixth-generation (6G) and beyond communications. In this paper, a wideband channel measurement campaign in an indoor lobby at 306-321 GHz is presented. The measurement system consists of a vector network analyzer (VNA)-based channel sounder, and a directional antenna equipped at the receiver to resolve multi-path components (MPCs) in the angular domain. In particular, 21 positions and 3780 channel impulse responses (CIRs) are measured in the lobby, including the line-of-sight (LoS), non-line-of-sight (NLoS) and obstructed-line-of-sight (OLoS) cases. Multi-path propagation is elaborated in terms of clustering results, and the effect of typical scatterers in the indoor lobby scenario in the THz band is explored. Moreover, indoor THz channel characteristics are analyzed in depth. Specifically, best direction and omni-directional path losses are analyzed by invoking close-in and alpha-beta path loss models. The most clusters are observed in the OLoS case, followed by NLoS and then LoS cases. On average, the power dispersion of MPCs is smaller in the LoS case in both temporal and angular domains, compared with the NLoS and OLoS counterparts.Comment: 6 pages, 15 figure

    Securearray: Improving WiFi security with fine-grained physical-layer information

    Get PDF
    Despite the important role that WiFi networks play in home and enterprise networks they are relatively weak from a security standpoint. With easily available directional antennas, attackers can be physically located off-site, yet compromise WiFi security protocols such as WEP, WPA, and even to some extent WPA2 through a range of exploits specific to those protocols, or simply by running dictionary and human-factors attacks on users' poorly-chosen passwords. This presents a security risk to the entire home or enterprise network. To mitigate this ongoing problem, we propose SecureArray, a system designed to operate alongside existing wireless security protocols, adding defense in depth against active attacks. SecureArray's novel signal processing techniques leverage multi-antenna access point (AP) to profile the directions at which a client's signals arrive, using this angle-of-arrival (AoA) information to construct highly sensitive signatures that with very high probability uniquely identify each client. Upon overhearing a suspicious transmission, the client and AP initiate an AoA signature-based challenge-response protocol to confirm and mitigate the threat. We also discuss how SecureArray can mitigate direct denial-of-service attacks on the latest 802.11 wireless security protocol. We have implemented SecureArray with an eight-antenna WARP hardware radio acting as the AP. Our experimental results show that in a busy office environment, SecureArray is orders of magnitude more accurate than current techniques, mitigating 100% of WiFi spoofing attack attempts while at the same time triggering false alarms on just 0.6% of legitimate traffic. Detection rate remains high when the attacker is located only five centimeters away from the legitimate client, for AP with fewer numbers of antennas and when client is mobile

    THz Wireless Channel Characterization and Modeling for Chip-to-Chip Communication in Computing Systems

    Get PDF
    This research focuses on the characterization and modeling of the THz wireless channel for chip-to-chip communication in computing systems. To understand the signal propagation mechanisms in a metal enclosure, this thesis presents the channel characterizations inside a desktop sized metal cavity with the consideration of several potential scenarios. Based on the measurement findings, a path loss model for THz chip-to-chip communication is proposed. According to the cavity environment and the statistical properties of the channel inside the metal cavity, a geometry based statistical channel model is constructed. Afterwards, a more practical motherboard desktop environment is investigated by putting the densely populated motherboard in the metal cavity. Both channel characterization and modeling are presented in the thesis for this practical environment. Besides that, deep learning methods are applied on the property prediction of THz wireless channel in the motherboard desktop environment. A ResNet based model is proposed and analyzed for the prediction of the scenario the channel is under and the attribute of the predicted scenario. The objective of this research is to provide other researchers with guidelines on how to characterize and model the wireless channel in computing systems, and provide the channel information for future THz chip-to-chip wireless system design.Ph.D
    corecore