43 research outputs found

    Initial Access in 5G mm-Wave Cellular Networks

    Full text link
    The massive amounts of bandwidth available at millimeter-wave frequencies (roughly above 10 GHz) have the potential to greatly increase the capacity of fifth generation cellular wireless systems. However, to overcome the high isotropic pathloss experienced at these frequencies, high directionality will be required at both the base station and the mobile user equipment to establish sufficient link budget in wide area networks. This reliance on directionality has important implications for control layer procedures. Initial access in particular can be significantly delayed due to the need for the base station and the user to find the proper alignment for directional transmission and reception. This paper provides a survey of several recently proposed techniques for this purpose. A coverage and delay analysis is performed to compare various techniques including exhaustive and iterative search, and Context Information based algorithms. We show that the best strategy depends on the target SNR regime, and provide guidelines to characterize the optimal choice as a function of the system parameters.Comment: 6 pages, 3 figures, 3 tables, 15 references, submitted to IEEE COMMAG 201

    Intelligent Resource Allocation in 5G Multi-Radio Heterogeneous Networks

    Get PDF
    The fast-moving evolution of wireless networks, which started less than three decades ago, has resulted in worldwide connectivity and influenced the development of a global market in all related areas. However, in recent years, the growing user traffic demands have led to the saturation of licensed and unlicensed frequency bands regarding capacity and load-over-time. On the physical layer the used spectrum efficiency is already close to Shannon’s limit; however the traffic demand continues to grow, forcing mobile network operators and equipment manufacturers to evaluate more effective strategies of the wireless medium access.One of these strategies, called cell densification, implies there are a growing number of serving entities, with the appropriate reduction of the per-cell coverage area. However, if implemented blindly, this approach will lead to a significant growth in the average interference level and overhead control signaling, which are both required to allow sufficient user mobility. Furthermore, the interference is also affected by the increasing variety of radio access technologies (RATs) and applications, often deployed without the necessary level of cooperation with technologies that are already in place.To overcome these problems today’s telecommunication standardization groups are trying to collaborate. That is why the recent agenda of the fifth generation wireless networks (5G) includes not only the development schedules for the particular technologies but also implies there should be an expansion of the appropriate interconnection techniques. In this thesis, we describe and evaluate the concept of heterogeneous networks (HetNets), which involve the cooperation between several RATs.In the introductory part, we discuss the set of the problems, related to HetNets, and review the HetNet development process. Moreover, we show the evolution of existing and potential segments of the multi-RAT 5G network, together with the most promising applications, which could be used in future HetNets.Further, in the thesis, we describe the set of key representative scenarios, including three-tier WiFi-LTE multi-RAT deployment, MTC-enabled LTE, and the mmWave-based network. For each of these scenarios, we define a set of unsolved issues and appropriate solutions. For the WiFi-LTE multi-RAT scenario, we develop the framework, enabling intelligent and flexible resource allocation between the involved RATs. For MTC-enabled LTE, we study the effect of massive MTC deployments on the performance of LTE random access procedure and propose some basic methods to improve its efficiency. Finally, for the mmWave scenario, we study the effects of connectivity strategies, human body blockage and antenna array configuration on the overall network performance. Next, we develop a set of validated analytical and simulation-based techniques which allow us to evaluate the performance of proposed solutions. At the end of the introductory part a set of HetNet-related demo activities is demonstrated

    Context Information for Fast Cell Discovery in mm-wave 5G Networks

    Full text link
    The exploitation of the mm-wave bands is one of the most promising solutions for 5G mobile radio networks. However, the use of mm-wave technologies in cellular networks is not straightforward due to mm-wave harsh propagation conditions that limit access availability. In order to overcome this obstacle, hybrid network architectures are being considered where mm-wave small cells can exploit an overlay coverage layer based on legacy technology. The additional mm-wave layer can also take advantage of a functional split between control and user plane, that allows to delegate most of the signaling functions to legacy base stations and to gather context information from users for resource optimization. However, mm-wave technology requires high gain antenna systems to compensate for high path loss and limited power, e.g., through the use of multiple antennas for high directivity. Directional transmissions must be also used for the cell discovery and synchronization process, and this can lead to a non-negligible delay due to the need to scan the cell area with multiple transmissions at different directions. In this paper, we propose to exploit the context information related to user position, provided by the separated control plane, to improve the cell discovery procedure and minimize delay. We investigate the fundamental trade-offs of the cell discovery process with directional antennas and the effects of the context information accuracy on its performance. Numerical results are provided to validate our observations.Comment: 6 pages, 8 figures, in Proceedings of European Wireless 201

    MAC Aspects of Millimeter-Wave Cellular Networks

    Get PDF
    The current demands for extremely high data rate wireless services and the spectrum scarcity at the sub-6 GHz bands are forcefully motivating the use of the millimeter-wave (mmWave) frequencies. MmWave communications are characterized by severe attenuation, sparse-scattering environment, large bandwidth, high penetration loss, beamforming with massive antenna arrays, and possible noise-limited operation. These characteristics imply a major difference with respect to legacy communication technologies, primarily designed for the sub-6 GHz bands, and are posing major design challenges on medium access control (MAC) layer. This book chapter discusses key MAC layer issues at the initial access and mobility management (e.g., synchronization, random access, and handover) as well as resource allocation (interference management, scheduling, and association). The chapter provides an integrated view on MAC layer issues for cellular networks and reviews the main challenges and trade-offs and the state-of-the-art proposals to address them

    Obstacle Avoidance Cell Discovery using mm-waves Directive Antennas in 5G Networks

    Get PDF
    With the advent of next-generation mobile devices, wireless networks must be upgraded to fill the gap between huge user data demands and scarce channel capacity. Mm-waves tech- nologies appear as the key-enabler for the future 5G networks design, exhibiting large bandwidth availability and high data rate. As counterpart, the small wave-length incurs in a harsh signal propagation that limits the transmission range. To overcome this limitation, array of antennas with a relatively high number of small elements are used to exploit beamforming techniques that greatly increase antenna directionality both at base station and user terminal. These very narrow beams are used during data transfer and tracking techniques dynamically adapt the direction according to terminal mobility. During cell discovery when initial synchronization must be acquired, however, directionality can delay the process since the best direction to point the beam is unknown. All space must be scanned using the tradeoff between beam width and transmission range. Some support to speed up the cell search process can come from the new architectures for 5G currently being investigated, where conventional wireless network and mm-waves technologies coexist. In these architecture a functional split between C-plane and U-plane allows to guarantee the continuous availability of a signaling channel through conventional wireless technologies with the opportunity to convey context information from users to network. In this paper, we investigate the use of position information provided by user terminals in order to improve the performance of the cell search process. We analyze mm-wave propagation environment and show how it is possible to take into account of position inaccuracy and reflected rays in presence of obstacle

    A Tutorial on Beam Management for 3GPP NR at mmWave Frequencies

    Full text link
    The millimeter wave (mmWave) frequencies offer the availability of huge bandwidths to provide unprecedented data rates to next-generation cellular mobile terminals. However, mmWave links are highly susceptible to rapid channel variations and suffer from severe free-space pathloss and atmospheric absorption. To address these challenges, the base stations and the mobile terminals will use highly directional antennas to achieve sufficient link budget in wide area networks. The consequence is the need for precise alignment of the transmitter and the receiver beams, an operation which may increase the latency of establishing a link, and has important implications for control layer procedures, such as initial access, handover and beam tracking. This tutorial provides an overview of recently proposed measurement techniques for beam and mobility management in mmWave cellular networks, and gives insights into the design of accurate, reactive and robust control schemes suitable for a 3GPP NR cellular network. We will illustrate that the best strategy depends on the specific environment in which the nodes are deployed, and give guidelines to inform the optimal choice as a function of the system parameters.Comment: 22 pages, 19 figures, 10 tables, published in IEEE Communications Surveys and Tutorials. Please cite it as M. Giordani, M. Polese, A. Roy, D. Castor and M. Zorzi, "A Tutorial on Beam Management for 3GPP NR at mmWave Frequencies," in IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 173-196, First quarter 201

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication
    corecore