31,723 research outputs found

    FoveaBox: Beyond Anchor-based Object Detector

    Full text link
    We present FoveaBox, an accurate, flexible, and completely anchor-free framework for object detection. While almost all state-of-the-art object detectors utilize predefined anchors to enumerate possible locations, scales and aspect ratios for the search of the objects, their performance and generalization ability are also limited to the design of anchors. Instead, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object. The scales of target boxes are naturally associated with feature pyramid representations. In FoveaBox, an instance is assigned to adjacent feature levels to make the model more accurate.We demonstrate its effectiveness on standard benchmarks and report extensive experimental analysis. Without bells and whistles, FoveaBox achieves state-of-the-art single model performance on the standard COCO and Pascal VOC object detection benchmark. More importantly, FoveaBox avoids all computation and hyper-parameters related to anchor boxes, which are often sensitive to the final detection performance. We believe the simple and effective approach will serve as a solid baseline and help ease future research for object detection. The code has been made publicly available at https://github.com/taokong/FoveaBox .Comment: IEEE Transactions on Image Processing, code at: https://github.com/taokong/FoveaBo

    Detecting Lesion Bounding Ellipses With Gaussian Proposal Networks

    Full text link
    Lesions characterized by computed tomography (CT) scans, are arguably often elliptical objects. However, current lesion detection systems are predominantly adopted from the popular Region Proposal Networks (RPNs) that only propose bounding boxes without fully leveraging the elliptical geometry of lesions. In this paper, we present Gaussian Proposal Networks (GPNs), a novel extension to RPNs, to detect lesion bounding ellipses. Instead of directly regressing the rotation angle of the ellipse as the common practice, GPN represents bounding ellipses as 2D Gaussian distributions on the image plain and minimizes the Kullback-Leibler (KL) divergence between the proposed Gaussian and the ground truth Gaussian for object localization. We show the KL divergence loss approximately incarnates the regression loss in the RPN framework when the rotation angle is 0. Experiments on the DeepLesion dataset show that GPN significantly outperforms RPN for lesion bounding ellipse detection thanks to lower localization error. GPN is open sourced at https://github.com/baidu-research/GP

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio
    • …
    corecore