3 research outputs found

    혈관 구조 분석 기반 혈류선 추출과 불투명도 변조를 이용한 혈류 가시화 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 신영길.With recent advances in acquisition and simulation of blood flow data, blood flow visualization has been widely used in medical imaging for the diagnosis and treatment of pathological vessels. The integral line based method has been most commonly employed to depict hemodynamic data because it exhibits a long term flow behavior useful for flow analysis. This method generates integral lines to be used as a basis for graphical representation by tracing the trajectory of a massless particle released on the vector field through a numerical integration. However, there are several unsolved problems when this previous method is applied to thin curved vascular structures. The first one is to locate a seeding plane, which is manually performed in the existing methods, thus yielding inconsistent visual results. The second one is the early termination of a line integration due to locally reversed flow and narrow tubular structure, which results in short flowlines comparing with the vessel length. And the last one is the line occlusion caused by the dense depiction of flowlines. Additionally, in blood flow visualization for clinical uses, it is essential to apparently exhibit abnormal flow relevant to vessel diseases. In this paper, we present an enhanced method that overcomes problems related to the integration based flow visualization and depicts hemodynamics in a more informative way for assisting the diagnosis process. Using the fact that blood flow passes through the inlet or outlet but is blocked by vessel wall, we firstly identify the vessel inlet or outlet by the orthogonality metric between flow velocity vector and vessel surface normal vector. Then, we generate seed points on the detected inlet or outlet by Poisson disk sampling. Therefore, we can achieve the automatic seeding that leads to a consistent and faster flow depiction by skipping the manual location of a seeding plane to initiate the line integration. In addition, we resolve the early terminated line integration by applying the tracing direction adaptively based on flow direction at each seed point and by performing the additional seeding near the terminated location. This solution enables to yield length-extended flowlines, which contribute to faithful flow visualization. Based on the observation that blood flow usually follows the vessel track if there is no obstacle or leak in the middle of a passage, we define the representative flowline for each branch by the vessel centerline. Then, we render flowlines by assigning the opacity according to their shape similarity with the vessel centerline so that flowlines similar to the vessel centerline are shown transparently, while different ones opaquely. Accordingly, our opacity modulation method enables flowlines with unusual flow pattern to appear more noticeable, while minimizing visual clutter and line occlusion. Finally, we introduce HSV (hue, saturation, value) color coding to simultaneously exhibit flow attributes such as local speed and residence time. This color coding gives a more realistic fading effect on the older particles or line segments by attenuating the saturation according to the residence time. Hence, it supports users in comprehending intuitively multiple information at once. Experimental results show that our technique is well suitable to depict blood flow in vascular structures.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Problem Statement 3 1.3 Main Contribtion 7 1.4 Organization of the Dissertation 8 Chapter 2 Related Works 9 2.1 Flow and Velocity Vector 9 2.2 Flow Visualization 10 2.3 Blood Flow Visualization 16 2.3.1 Geometric Method 16 2.3.2 Feature-Based Method 18 2.3.3 Partition-Based Method 19 Chapter 3 Integration based Flowline Extraction 22 3.1 Overview 22 3.2 Seeding 23 3.3 Barycentric Coordinate Conversion 24 3.4 Cell Searching 26 3.5 Velocity Vector Calculation 27 3.6 Advection 28 3.7 Step Size Adaptation 30 Chapter 4 Blood Flow Visualization using Flow and Geometric Analysis 32 4.1 Preprocessing 33 4.2 Inlet or Outlet based Seeding 35 4.3 Tracing 39 4.3.1 Flow based Bidirectional Tracing 39 4.3.2 Additional Seeding for Length Extended Line Integration 41 4.4 Opacity Modulation 43 4.4.1 Global Opacity 45 4.4.2 Local Opacity 46 4.4.3 Opacity Adjustment 52 4.4.4 Blending 53 4.5 HSV Color Coding 54 4.6 Vessel Rendering 58 4.6.1 Vessel Smoothing 59 4.6.2 Vessel Contour Enhancement 60 4.7 Flowline Drawing 61 4.7.1 Line Illumination 61 4.7.2 Line Halo 63 4.8 Animation 64 Chapter 5 Experimental Results 67 5.1 Evaluation on Seeding 69 5.2 Evaluation on Tracing 74 5.3 Evaluation on Opacity Modulation 82 5.4 Parameter Study 85 Chapter 6 Conclusion 87 Bibliography 89 초 록 99Docto

    Illustrative Flow Visualization of 4D PC-MRI Blood Flow and CFD Data

    Get PDF
    Das zentrale Thema dieser Dissertation ist die Anwendung illustrativer Methoden auf zwei bisher ungelöste Probleme der Strömungsvisualisierung. Das Ziel der Strömungsvisualisierung ist die Bereitstellung von Software, die Experten beim Auswerten ihrer Strömungsdaten und damit beim Erkenntnisgewinn unterstützt. Bei der illustrativen Visualisierung handelt es sich um einen Zweig der Visualisierung, der sich an der künstlerischen Arbeit von Illustratoren orientiert. Letztere sind darauf spezialisiert komplizierte Zusammenhänge verständlich und ansprechend zu vermitteln. Die angewendeten Techniken werden in der illustrativen Visualisierung auf reale Daten übertragen, um die Effektivität der Darstellung zu erhöhen. Das erste Problem, das im Rahmen dieser Dissertation bearbeitet wurde, ist die eingeschränkte Verständlichkeit von komplexen Stromflächen. Selbstverdeckungen oder Aufrollungen behindern die Form- und Strömungswahrnehmung und machen diese Flächen gerade in interessanten Strömungssituationen wenig nützlich. Auf Basis von handgezeichneten Strömungsdarstellungen haben wir ein Flächenrendering entwickelt, das Silhouetten, nicht-photorealistische Beleuchtung und illustrative Stromlinien verwendet. Interaktive Flächenschnitte erlauben die Exploration der Flächen und der Strömungen, die sie repräsentieren. Angewendet auf verschiedene Stromflächen ließ sich zeigen, dass die Methoden die Verständlichkeit erhöhen, v.a. in Bereichen komplexer Strömung mit Aufwicklungen oder Singularitäten. Das zweite Problem ist die Strömungsanalyse des Blutes aus 4D PC-MRI-Daten. An diese relativ neue Datenmodalität werden hohe Erwartungen für die Erforschung und Behandlung kardiovaskulärer Krankheiten geknüpft, da sie erstmals ein dreidimensionales, zeitlich aufgelöstes Abbild der Hämodynamik liefert. Bisher werden 4D PC-MRI-Daten meist mit Werkzeugen der klassischen Strömungsvisualisierung verarbeitet. Diese werden den besonderen Ansprüchen der medizinischen Anwender jedoch nicht gerecht, die in kurzer Zeit eine übersichtliche Darstellung der relevanten Strömungsaspekte erhalten möchten. Wir haben ein Werkzeug zur visuellen Analyse der Blutströmung entwickelt, welches eine einfache Detektion von markanten Strömungsmustern erlaubt, wie z.B. Jets, Wirbel oder Bereiche mit hoher Blutverweildauer. Die Grundidee ist hierbei aus vorberechneten Integrallinien mit Hilfe speziell definierter Linienprädikate die relevanten, d.h. am gefragten Strömungsmuster, beteiligten Linien ausgewählt werden. Um eine intuitive Darstellung der Resultate zu erreichen, haben wir uns von Blutflußillustrationen inspirieren lassen und präsentieren eine abstrakte Linienbündel- und Wirbeldarstellung. Die Linienprädikatmethode sowie die abstrakte Darstellung der Strömungsmuster wurden an 4D PC-MRI-Daten von gesunden und pathologischen Aorten- und Herzdaten erfolgreich getestet. Auch die Evaluierung durch Experten zeigt die Nützlichkeit der Methode und ihr Potential für den Einsatz in der Forschung und der Klinik.This thesis’ central theme is the use of illustrative methods to solve flow visualization problems. The goal of flow visualization is to provide users with software tools supporting them analyzing and extracting knowledge from their fluid dynamics data. This fluid dynamics data is produced in large amounts by simulations or measurements to answer diverse questions in application fields like engineering or medicine. This thesis deals with two unsolved problems in flow visualization and tackles them with methods of illustrative visualization. The latter is a subbranch of visualization whose methods are inspired by the art work of professional illustrators. They are specialized in the comprehensible and esthetic representation of complex knowledge. With illustrative visualization, their techniques are applied to real data to enhance their representation. The first problem dealt with in this thesis is the limited shape and flow perception of complex stream surfaces. Self-occlusion and wrap-ups hinder their effective use in the most interesting flow situations. On the basis of hand-drawn flow illustrations, a surface rendering method was designed that uses silhouettes, non-photorealistic shading, and illustrative surface stream lines. Additionally, geometrical and flow-based surface cuts allow the user an interactive exploration of the surface and the flow it represents. By applying this illustrative technique to various stream surfaces and collecting expert feedback, we could show that the comprehensibility of the stream surfaces was enhanced – especially in complex areas with surface wrap-ups and singularities. The second problem tackled in this thesis is the analysis of blood flow from 4D PC-MRI data. From this rather young data modality, medical experts expect many advances in the research of cardiovascular diseases because it delivers a three-dimensional and time-resolved image of the hemodynamics. However, 4D PC-MRI data are mainly processed with standard flow visualizaton tools, which do not fulfill the requirements of medical users. They need a quick and easy-to-understand display of the relevant blood flow aspects. We developed a tool for the visual analysis of blood flow that allows a fast detection of distinctive flow patterns, such as high-velocity jets, vortices, or areas with high residence times. The basic idea is to precalculate integral lines and use specifically designed line predicates to select and display only lines involved in the pattern of interest. Traditional blood flow illustrations inspired us to an abstract and comprehensible depiction of the resulting line bundles and vortices. The line predicate method and the illustrative flow pattern representation were successfully tested with 4D PC-MRI data of healthy and pathological aortae and hearts. Also, the feedback of several medical experts confirmed the usefulness of our methods and their capabilities for a future application in the clinical research and routine
    corecore