50,540 research outputs found

    Analyzing Users' Activity in On-line Social Networks over Time through a Multi-Agent Framework

    Full text link
    [EN] The number of people and organizations using online social networks as a new way of communication is continually increasing. Messages that users write in networks and their interactions with other users leave a digital trace that is recorded. In order to understand what is going on in these virtual environments, it is necessary systems that collect, process, and analyze the information generated. The majority of existing tools analyze information related to an online event once it has finished or in a specific point of time (i.e., without considering an in-depth analysis of the evolution of users activity during the event). They focus on an analysis based on statistics about the quantity of information generated in an event. In this article, we present a multi-agent system that automates the process of gathering data from users activity in social networks and performs an in-depth analysis of the evolution of social behavior at different levels of granularity in online events based on network theory metrics. We evaluated its functionality analyzing users activity in events on Twitter.This work is partially supported by the PROME-TEOII/2013/019, TIN2014-55206-R, TIN2015-65515-C4-1-R, H2020-ICT-2015-688095.Del Val Noguera, E.; Martínez, C.; Botti, V. (2016). Analyzing Users' Activity in On-line Social Networks over Time through a Multi-Agent Framework. Soft Computing. 20(11):4331-4345. https://doi.org/10.1007/s00500-016-2301-0S433143452011Ahn Y-Y, Han S, Kwak H, Moon S, Jeong H (2007) Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th WWW, pp 835–844Bastiaensens S, Vandebosch H, Poels K, Cleemput KV, DeSmet A, Bourdeaudhuij ID (2014) Cyberbullying on social network sites. an experimental study into behavioural intentions to help the victim or reinforce the bully. Comput Hum Behav 31:259–271Benevenuto F, Rodrigues T, Cha M, Almeida V (2009) Characterizing user behavior in online social networks. In: Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference. ACM, pp 49–62Borge-Holthoefer J, Rivero A, García I, Cauhé E, Ferrer A, Ferrer D, Francos D, Iñiguez D, Pérez MP, Ruiz G et al (2011) Structural and dynamical patterns on online social networks: the Spanish may 15th movement as a case study. PLoS One 6(8):e23883Borondo J, Morales AJ, Losada JC, Benito RM (2013) Characterizing and modeling an electoral campaign in the context of Twitter: 2011 Spanish presidential election as a case studyCatanese SA, De Meo P, Ferrara E, Fiumara G, Provetti A (2011) Crawling facebook for social network analysis purposes. In: Proceedings of the international conference on web intelligence, mining and semantics. ACM, p 52Cha M, Mislove A, Gummadi KP (2009) A measurement-driven analysis of information propagation in the flickr social network. In: Proceedings of the 18th international conference on World Wide Web. ACM, pp 721–730del Val E, Martínez C, Botti V (2015a) A multi-agent framework for the analysis of users behavior over time in on-line social networks. In: 10th International conference on soft computing models in industrial and environmental applications. Springer, Berlin, pp 191–201del Val E, Rebollo M, Botti V (2015b) Does the type of event influence how user interactions evolve on twitter? PLOS One 10(5):e0124049Eurostat (2016a) Internet use statistics—individuals. http://ec.europa.eu/eurostat/statistics-explained/index.php/Internet_use_statistics_-_individuals . Accessed 29 April 2016Eurostat (2016b) Social media—statistics on the use by enterprises. http://ec.europa.eu/eurostat/statistics-explained/index.php/Social_media_-_statistics_on_the_use_by_enterprises#Further_Eurostat_information . Accessed 29 April 2016García Fornes AM, Rodrigo Solaz M, Terrasa Barrena AM, Inglada J, Javier V, Jorge Cano J, Mulet Mengual L, Palomares Chust A, Búrdalo Rapa LA, Giret Boggino AS et al (2015) Magentix 2 user’s manualGolbeck J, Robles C, Turner K (2011) Predicting personality with social media. In: CHI’11, pp 253–262Guimerà R, Llorente A, Moro E, Sales-Pardo M (2012) Predicting human preferences using the block structure of complex social networks. PloS One 7(9):e44620Huberman BA, Romero DM, Wu F (2008) Social networks that matter: Twitter under the microscope. arXiv preprint arXiv:0812.1045Jamali M, Abolhassani H (2006) Different aspects of social network analysis. In: 2006 IEEE/WIC/ACM international conference on web intelligence (WI 2006 main conference proceedings)(WI’06). IEEE, pp 66–72Jiang Y, Jiang J (2014) Understanding social networks from a multiagent perspective. Parallel Distrib Syst IEEE Trans 25(10):2743–2759Kossinets G, Watts D (2006) Empirical analysis of an evolving social network. Science 311(5757):88–90Kumar R, Novak J, Tomkins A (2010) Structure and evolution of online social networks. In: Yu PS, Han J, Faloutsos C (eds) Link mining: models, algorithms, and applications. Springer, New York, pp 337–357Lazer D (2009) Life in the network: the coming age of computational social science. Science 323(5915):721–723Leskovec J, Adamic LA, Huberman BA (2007) The dynamics of viral marketing. ACM Trans Web 1(1):5Licoppe C, Smoreda Z (2005) Are social networks technologically embedded? How networks are changing today with changes in communication technology. Soc Netw 27(4):317–335Lotan G, Graeff E, Ananny M, Gaffney D, Pearce I, Boyd D (2011) The revolutions were tweeted: information flows during the 2011 tunisian and egyptian revolutions. Int J Commun 5:1375–1405Peña-López I, Congosto M, Aragón P (2013) Spanish indignados and the evolution of 15M: towards networked para-institutions. Big data: challenges and opportunities, pp 25–26Perliger A, Pedahzur A (2011) Social network analysis in the study of terrorism and political violence. PS Polit Sci Polit 44:45–50Romero DM, Galuba W, Asur S, Huberman BA (2011a) Influence and passivity in social media. In: Proceedings of the 20th WWW, pp 113–114Romero DM, Meeder B, Kleinberg J (2011b) Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on Twitter. In: Proceedings of the 20th WWW, pp 695–704Stockman FN, Doreian P, (1997) Evolution of social networks: processes and principles. In: Doreian P, Stokman FN (eds) Evolution of social networks. Routledge, London, pp 233–250Traud AL, Mucha PJ, Porter MA (2012) Social structure of facebook networks. Phys A Stat Mech Its Appl 391(16):4165–4180Ugander J, Karrer B, Backstrom L, Marlow C (2011) The anatomy of the Facebook social graph. arXiv preprint arXiv:1111.4503Valero S, del Val E, Alemany J, Botti V (2015) Using magentix2 in smart-home environments. In: 10th International conference on soft computing models in industrial and environmental applications. Springer, Berlin, pp 27–37Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, CambridgeWersm (2015) How much data is generated every minute on social media? http://wersm.com/how-much-data-is-generated-every-minute-on-social-media/ . Accessed 29 April 201

    Solutions to Detect and Analyze Online Radicalization : A Survey

    Full text link
    Online Radicalization (also called Cyber-Terrorism or Extremism or Cyber-Racism or Cyber- Hate) is widespread and has become a major and growing concern to the society, governments and law enforcement agencies around the world. Research shows that various platforms on the Internet (low barrier to publish content, allows anonymity, provides exposure to millions of users and a potential of a very quick and widespread diffusion of message) such as YouTube (a popular video sharing website), Twitter (an online micro-blogging service), Facebook (a popular social networking website), online discussion forums and blogosphere are being misused for malicious intent. Such platforms are being used to form hate groups, racist communities, spread extremist agenda, incite anger or violence, promote radicalization, recruit members and create virtual organi- zations and communities. Automatic detection of online radicalization is a technically challenging problem because of the vast amount of the data, unstructured and noisy user-generated content, dynamically changing content and adversary behavior. There are several solutions proposed in the literature aiming to combat and counter cyber-hate and cyber-extremism. In this survey, we review solutions to detect and analyze online radicalization. We review 40 papers published at 12 venues from June 2003 to November 2011. We present a novel classification scheme to classify these papers. We analyze these techniques, perform trend analysis, discuss limitations of existing techniques and find out research gaps

    Locational wireless and social media-based surveillance

    Get PDF
    The number of smartphones and tablets as well as the volume of traffic generated by these devices has been growing constantly over the past decade and this growth is predicted to continue at an increasing rate over the next five years. Numerous native features built into contemporary smart devices enable highly accurate digital fingerprinting techniques. Furthermore, software developers have been taking advantage of locational capabilities of these devices by building applications and social media services that enable convenient sharing of information tied to geographical locations. Mass online sharing resulted in a large volume of locational and personal data being publicly available for extraction. A number of researchers have used this opportunity to design and build tools for a variety of uses – both respectable and nefarious. Furthermore, due to the peculiarities of the IEEE 802.11 specification, wireless-enabled smart devices disclose a number of attributes, which can be observed via passive monitoring. These attributes coupled with the information that can be extracted using social media APIs present an opportunity for research into locational surveillance, device fingerprinting and device user identification techniques. This paper presents an in-progress research study and details the findings to date

    Challenges in Bridging Social Semantics and Formal Semantics on the Web

    Get PDF
    This paper describes several results of Wimmics, a research lab which names stands for: web-instrumented man-machine interactions, communities, and semantics. The approaches introduced here rely on graph-oriented knowledge representation, reasoning and operationalization to model and support actors, actions and interactions in web-based epistemic communities. The re-search results are applied to support and foster interactions in online communities and manage their resources
    • …
    corecore