5 research outputs found

    It’s About Time: 4th International Workshop on Temporal Analyses of Learning Data

    Get PDF
    Interest in analyses that probe the temporal aspects of learning continues to grow. The study of common and consequential sequences of events (such as learners accessing resources, interacting with other learners and engaging in self-regulatory activities) and how these are associated with learning outcomes, as well as the ways in which knowledge and skills grow or evolve over time are both core areas of interest. Learning analytics datasets are replete with fine-grained temporal data: click streams; chat logs; document edit histories (e.g. wikis, etherpads); motion tracking (e.g. eye-tracking, Microsoft Kinect), and so on. However, the emerging area of temporal analysis presents both technical and theoretical challenges in appropriating suitable techniques and interpreting results in the context of learning. The learning analytics community offers a productive focal ground for exploring and furthering efforts to address these challenges as it is already positioned in the “‘middle space’ where learning and analytic concerns meet” (Suthers & Verbert, 2013, p 1). This workshop, the fourth in a series on temporal analysis of learning, provides a focal point for analytics researchers to consider issues around and approaches to temporality in learning analytics

    Dialogue as Data in Learning Analytics for Productive Educational Dialogue

    Get PDF
    This paper provides a novel, conceptually driven stance on the state of the contemporary analytic challenges faced in the treatment of dialogue as a form of data across on- and offline sites of learning. In prior research, preliminary steps have been taken to detect occurrences of such dialogue using automated analysis techniques. Such advances have the potential to foster effective dialogue using learning analytic techniques that scaffold, give feedback on, and provide pedagogic contexts promoting such dialogue. However, the translation of much prior learning science research to online contexts is complex, requiring the operationalization of constructs theorized in different contexts (often face-to-face), and based on different datasets and structures (often spoken dialogue). In this paper, we explore what could constitute the effective analysis of productive online dialogues, arguing that it requires consideration of three key facets of the dialogue: features indicative of productive dialogue; the unit of segmentation; and the interplay of features and segmentation with the temporal underpinning of learning contexts. The paper thus foregrounds key considerations regarding the analysis of dialogue data in emerging learning analytics environments, both for learning-science and for computationally oriented researchers

    Large-Scale Networks: Algorithms, Complexity and Real Applications

    Get PDF
    Networks have broad applicability to real-world systems, due to their ability to model and represent complex relationships. The discovery and forecasting of insightful patterns from networks are at the core of analytical intelligence in government, industry, and science. Discoveries and forecasts, especially from large-scale networks commonly available in the big-data era, strongly rely on fast and efficient network algorithms. Algorithms for dealing with large-scale networks are the first topic of research we focus on in this thesis. We design, theoretically analyze and implement efficient algorithms and parallel algorithms, rigorously proving their worst-case time and space complexities. Our main contributions in this area are novel, parallel algorithms to detect k-clique communities, special network groups which are widely used to understand complex phenomena. The proposed algorithms have a space complexity which is the square root of that of the current state-of-the-art. Time complexity achieved is optimal, since it is inversely proportional to the number of processing units available. Extensive experiments were conducted to confirm the efficiency of the proposed algorithms, even in comparison to the state-of-the-art. We experimentally measured a linear speedup, substantiating the optimal performances attained. The second focus of this thesis is the application of networks to discover insights from real-world systems. We introduce novel methodologies to capture cross correlations in evolving networks. We instantiate these methodologies to study the Internet, one of the most, if not the most, pervasive modern technological system. We investigate the dynamics of connectivity among Internet companies, those which interconnect to ensure global Internet access. We then combine connectivity dynamics with historical worldwide stock markets data, and produce graphical representations to visually identify high correlations. We find that geographically close Internet companies offering similar services are driven by common economic factors. We also provide evidence on the existence and nature of hidden factors governing the dynamics of Internet connectivity. Finally, we propose network models to effectively study the Internet Domain Name System (DNS) traffic, and leverage these models to obtain rankings of Internet domains as well as to identify malicious activities
    corecore