

Autore:
Simone Mainardi

Relatori:

Prof.

Ing.

Prof.

Luciano Lenzini

Enrico Gregori

Enzo Mingozzi

LARGE-SCALE NETWORKS:
ALGORITHMS, COMPLEXITY AND

REAL APPLICATIONS

Anno 2014
SSD ING-INF/05

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in
INGEGNERIA DELL’INFORMAZIONE

Tesi di Dottorato di Ricerca

Ai miei genitori, Gabriella e Luciano, e a Giulia
per me fonte continua di forza e perseveranza.

Acknowledgement. This thesis would not have been possible without the support of many

people over the years. I take advantage of this opportunity to thank some of them.

First and foremost, I would like to thank my advisors Prof. Luciano Lenzini and Enrico

Gregori for their constant encouragement and support. They have generously provided me

the best resources to study, learn and do research.

My sincere thanks go to Prof. Luca Deri for his openness, advice, patient indulgence and

unwavering belief that I can do anything if I want to enough.

My gratitude goes to my colleagues at the Institute for Informatics and Telematics (IIT)

of the Italian National Research Council (CNR). They have made the office a pleasant and

stimulating place to work.

Last but not the least, I would like to say thank you to my family for the unbending love

and support given me throughout all the phases of my life. Nothing I have done would have

been possible without my family.

VII

Sommario. Le reti hanno ampia applicabilità ai sistemi reali grazie alla loro capacità di model-

lare e rappresentare relazioni complesse. La scoperta e la previsione di schemi e regolarità nei

sistemi, rese possibili grazie alle reti, sono al centro dell’intelligenza e delle capacità analitiche

di scienza, industrie e governi. Scoperte e previsioni, in particolar modo oggi nell’era dei big-

data, non possono prescindere da algoritmi in grado di processare reti massive in modo veloce

ed efficiente.

Gli algoritmi per reti massive sono il primo filone di ricerca che sviluppiamo in questa tesi.

In particolare, progettiamo, analizziamo teoricamente e implementiamo algoritmi efficienti e

paralleli dimostrando rigorosamente le loro complessità di tempo e di spazio. I nostri contribu-

ti principali in questo filone sono algoritmi innovativi e paralleli per l’estrazione delle k-clique

community, particolari gruppi, all’interno delle reti, ampiamente utilizzati per studiare fenomeni

complessi. Gli algoritmi proposti hanno una complessità di spazio che è la radice quadrata di

quella dell’attuale stato dell’arte. La complessità di tempo raggiunta è ottimale, ossia inversa-

mente proporzionale al numero di unità elaborative disponibili agli algoritmi. Per confermare

l’efficienza degli algoritmi proposti, conduciamo un’ esaustiva serie di esperimenti anche in

relazione allo stato dell’arte esistente. Misuriamo sperimentalmente uno speedup lineare, che

convalida le performance ottimali raggiunte.

Il secondo filone di ricerca sviluppato riguarda l’applicazione delle reti per la comprensione

di sistemi reali. Inizialmente proponiamo metodologie innovative per individuare le correlazioni

all’interno di reti che evolvono nel tempo. Dopodiché istanziamo queste metodologie per lo

studio di Internet, uno dei sistemi tecnologici moderni più diffusi. In particolare, investighiamo

le dinamiche della connettività tra le aziende operanti nel settore Internet, le quali si inter-

connettono al fine di assicurarne il funzionamento globale. Successivamente, combinando le

dinamiche di connettività con le quotazioni delle stesse aziende sui mercati finanziari di tutto

il mondo, troviamo che aziende geograficamente vicine e con portfolio servizi simili sono gui-

date dagli stessi fattori economici. Forniamo inoltre prove riguardo all’esistenza e alla natura

dei fattori che governano le dinamiche della connettività Internet. In conclusione, proponiamo

modelli di rete per studiare il traffico del sistema dei nomi Internet, noto come Domain Name

System (DNS). Al fine di mostrare l’efficacia di questi modelli, li impieghiamo per ottenere

classificazioni dei domini Internet e per individuare possibili attività anomale o illegittime.

IX

Abstract. Networks have broad applicability to real-world systems, due to their ability to

model and represent complex relationships. The discovery and forecasting of insightful pat-

terns from networks are at the core of analytical intelligence in government, industry, and

science. Discoveries and forecasts, especially from large-scale networks commonly available

in the big-data era, strongly rely on fast and efficient network algorithms.

Algorithms for dealing with large-scale networks are the first topic of research we focus

on in this thesis. We design, theoretically analyze and implement efficient algorithms and

parallel algorithms, rigorously proving their worst-case time and space complexities. Our main

contributions in this area are novel, parallel algorithms to detect k-clique communities, special

network groups which are widely used to understand complex phenomena. The proposed

algorithms have a space complexity which is the square root of that of the current state-of-

the-art. Time complexity achieved is optimal, since it is inversely proportional to the number

of processing units available. Extensive experiments were conducted to confirm the efficiency

of the proposed algorithms, even in comparison to the state-of-the-art. We experimentally

measured a linear speedup, substantiating the optimal performances attained.

The second focus of this thesis is the application of networks to discover insights from real-

world systems. We introduce novel methodologies to capture cross correlations in evolving

networks. We instantiate these methodologies to study the Internet, one of the most, if not the

most, pervasive modern technological system. We investigate the dynamics of connectivity

among Internet companies, those which interconnect to ensure global Internet access. We

then combine connectivity dynamics with historical worldwide stock markets data, and produce

graphical representations to visually identify high correlations. We find that geographically

close Internet companies offering similar services are driven by common economic factors. We

also provide evidence on the existence and nature of hidden factors governing the dynamics

of Internet connectivity. Finally, we propose network models to effectively study the Internet

Domain Name System (DNS) traffic, and leverage these models to obtain rankings of Internet

domains as well as to identify malicious activities.

Contents

1 Introduction . 1

1.1 Motivation . 1

1.1.1 Large-Scale Networks to Extract Knowledge from Real-World

Systems . 1

1.1.1.1 The Intriguing Case of The Internet 2

1.1.2 Network Algorithms and the Cost of Extracting Knowledge 4

1.1.2.1 Community Detection Algorithms 5

1.2 Original Contributions . 7

1.2.1 Parallel Network Community Detection Algorithms 7

1.2.2 Network-Based Methodologies to Study the Internet 8

1.3 Organization of The Thesis . 9

2 Background and Definitions . 11

2.1 Networks: the Bridge between Raw Data and Knowledge 11

2.2 Connectivity Features of Network Nodes . 12

2.2.1 Direct Connectivity . 12

2.2.2 Local Connectivity . 13

2.2.3 Global Connectivity . 14

2.3 Community Detection in Networks . 16

3 Parallel Network Community Detection Algorithms 21

3.1 What, Why and How of k-Clique Communities . 21

3.2 Related Work . 23

XII Contents

3.3 Problem Formulation . 25

3.4 Scalability Issues of k-Clique Community Detection 27

3.5 Algorithms to Extract and Merge Connected Components 30

3.6 A Parallel Algorithm to Detect k-Clique Communities 34

3.6.1 Worst-Case Algorithm Complexities . 36

3.7 A Parallel Algorithm to Detect k-Clique Communities (on Steroids) . . . 37

3.7.1 A Sliding Window To Enable Thread Cooperation 38

3.7.2 Algorithm Description . 40

3.8 Experimental Results . 43

3.8.1 Experimental Setup and Input Data . 43

3.8.2 Experiments . 45

3.9 Discussion and Conclusion . 57

4 Network-Based Methodologies to Study the Internet 59

4.1 Networks, Internet Companies, and Stock Markets 59

4.1.1 Introduction . 59

4.1.2 Related Work . 61

4.1.3 Methodology . 62

4.1.4 Investigated Companies . 64

4.1.5 Results . 67

4.1.6 Conclusion and Future Directions . 73

4.2 Network Models of the Internet DNS Traffic . 74

4.2.1 Introduction and Related Work . 74

4.2.2 Understanding The DNS System . 76

4.2.3 DNS Modeling Methodologies . 80

4.2.3.1 Normalizing Non-Uniform TTL Values 80

4.2.3.2 Bipartite Network Models of the DNS 80

4.2.3.3 Common-Neighbors Network Models of the DNS 82

4.2.4 DNS Ranking Methodologies . 82

4.2.5 Results and Validation . 83

4.2.6 Future Work Items . 94

4.2.7 Conclusion . 95

Contents XIII

5 Conclusions and Future Directions . 97

5.1 Parallel Network Community Detection Algorithms 97

5.2 Network-Based Methodologies to Study the Internet 99

A Proofs of Our Theorems . 103

A.1 Proof of Correctness of the Connected Components Merging Algorithm103

A.2 A Parallel Algorithm to Detect k-Clique Communities 104

A.2.1 Proof of Worst-Case Time Complexity . 104

A.2.2 Proof of Worst-Case Space Complexity . 105

A.3 A Parallel Algorithm to Detect k-Clique Communities (on Steroids) . . . 106

A.3.1 Proof of Worst-Case Time Complexity . 106

A.3.2 Proof of Worst-Case Space Complexity . 106

List of Figures

3.1 A network with its k-clique communities . 26

3.2 The list of maximal cliques and the clique-clique overlap matrix of the

network in Fig. 3.1. 28

3.3 The binary matrix and the clique-clique network of the overlap matrix

in Fig. 3.2. 29

3.4 Dynamic evolution of a collection of disjoint sets. 31

3.5 Two networks and collections of disjoint sets representative of their

connected components. 33

3.6 An example of sliding window over the matrix of Fig. 3.2. 39

3.7 Runtime memory footprint of community detection algorithms 45

3.8 Algorithms execution time sensitivity to setup parameters 47

3.9 Parallel algorithms execution time comparisons . 48

3.10 Algorithms execution time versus number of threads (speedup). Part 1. 49

3.11 Algorithms execution time versus number of threads (speedup). Part 2. 49

3.12 Algorithms execution time comparisons with the state-of-the-art 50

3.13 Comparisons with other community detection algorithms. Part 1. 53

3.14 Comparisons with other community detection algorithms. Part 2. 55

4.1 An illustrative example of cross correlations detection among nodes

in an evolving network. 62

4.2 Autonomous Systems stocks minimum spanning tree 67

4.3 Autonomous Systems stocks hierarchical tree . 69

XVI List of Figures

4.4 Autonomous Systems stocks and connectivity features minimum

spanning tree . 71

4.5 Iterative DNS resolution of www.corriere.it . 76

4.6 Time To Live complementary cumulative distribution function for

“.it” domains DNS records . 78

4.7 Log-Log plots of frequency versus DNS network node degree 86

4.8 Complementary cumulative distribution function of node intensity in

the Common-Neighbors DNS network . 88

4.9 Common-Neighbors DNS network Maximum Spanning Tree 91

4.10 Common-Neighbors DNS network Maximum Spanning Tree for a

Large Italian Content Provider . 92

List of Tables

2.1 Features of community detection algorithms . 16

3.1 Real-world networks used in the experiments . 44

3.2 Features of networks used in the experiments . 45

3.3 Algorithms execution time comparisons . 54

4.1 Publicly traded Internet companies in study . 64

4.2 Structural properties of bipartite DNS networks. 84

4.3 Structural properties of Common-Neighbors DNS networks 87

4.4 “.it” domains ranking comparisons . 89

4.5 Top “.it” domains . 90

Nomenclature

Roman Symbols

A The adjacency matrix of a network

ai,j Element located at row i (column j) of a matrix A

B The adjacency matrix of a bipartite network

C The matrix of bivariate Pearson’s correlation coefficients

c A clique (complete graph) of a network

ccn The clustering coefficient of a node n

con The coreness of a node n

dn The number of edges with node n as an endpoint (degree)

E The set of links (or edges, or entities) in a network

xn The eigenvector centrality of a node n

F A collection of disjoint sets

fk Degree frequency, i.e., number of nodes having degree equal to k

G A network

knnn The average degree of neighbors of a node n

l The number of maximal cliques in a network

Lk The number of maximal cliques with size at least k in a network

lk The number of maximal cliques with size equal to k in a network

n An generic node (or vertex, or entity) in a network

N(n) The set of neighbors of a node n

Pn Feature P of a node n (e.g., the degree dn)

V The set of nodes (or vertices, or entities) in a network

XX Nomenclature

Other Symbols

α Functional inverse of Ackermann’s function

∧ Logical and

µ The arithmetic mean (average) of a collection of numbers

| s | The cardinality (number of elements) of a set s(
h
k

)
The binomial coefficient

s1 ∪ s2 Union of two sets s1 and s2

bac Largest previous integer of number a

a← b Algorithmic assignment: a get the value of b

∨ Logical or

r ∈ s Element r is an element of set s

σ The standard deviation of a collection of numbers

s1 ⊆ s2 Zero to | s1 | elements of set s1 are also elements of set s2

σ2 The variance of a collection of numbers

s1 × s2 Cartesian product of two sets s1 and s2

Acronyms

AS Autonomous System

BGP Border Gateway Protocol

CCDF Complementary Cumulative Distribution Function

ccTLD country code Top-Level Domain

cdn Content Distribution Network

CONNECT_ME Connected Components Merging

COS Clique Percolation Method on Steroids

CPM Clique Percolation Method

CPU Central Processing Unit

GCE Greedy Clique Expansion

GPU Graphics Processing Unit

IP Internet Protocol

IXP Internet eXchange Point

MST Minimum Spanning Tree

OSLOM Order Statistics Local Optimization Method

POP Point of Presence

Nomenclature XXI

RTT Round Trip Time

SCP Sequential Clique Percolation

s.t. Such That

t1tp Tier-1 Transit Provider

tp Transit Provider

TTL Time To Live

1

Introduction

“Whole compounded of several parts or members”

Definition of σν́στηµα, the greek root of the word system.

— LIDDELL AND SCOTT, A Greek-English Lexicon

“A large system consisting of many similar parts that are

connected together to allow movement or communication be-

tween or along the parts or between the parts and a control

centre”

Definition of the word network.

— Cambridge Advanced Learner’s Dictionary

1.1 Motivation

1.1.1 Large-Scale Networks to Extract Knowledge from Real-World Systems

Networks are of paramount importance to model the relationships between entities

of a system in order to gain new knowledge. Currently, networks find application in

many heterogeneous fields including finance [25] [141], management [78], technol-

ogy [179] [21], communication [196], and common social interactions [203], among

others. Networks have had direct implications on the ability of human beings to un-

derstand the structure and function of real systems, which has benefited all areas

of society including medicine [188] [95], public safety [203], critical services for the

population [193] [105] [159], business [6], and global markets [100] [26], along with

other matters.

Fundamentally, a network is an abstract model of a system, in which entities and

relationships are represented with nodes and links. If two entities have some kind of

relationship in the system, then their nodes are joined together with a link in the net-

2 1.1. MOTIVATION

work. This introductory definition, which might appear fairly abstract at a first glance,

is fundamentally flexible and effective. Indeed, it does not matter if we are interested

into the intricate web of interdependencies between banks, financial institutions and

governments [32], or we are figuring out the hierarchies in a corporation [78], the

basic concepts of networks can be applied to many systems. We can, therefore, vir-

tually always resort to networks whenever we want to study a system composed of

somehow interrelated entities.

1.1.1.1 The Intriguing Case of The Internet

Let us now continue from this introductory chapter with a closer look at one of the

most prominent modern technological systems, the Internet, which has come forward

as a usable technology which brings the dream of a seamlessly connected world

closer to reality.

The Internet is studied from (at least) four different levels of abstraction. At each

level it is composed of different building blocks. Specifically, the Internet can be seen

as:

1. A collection of electronic devices — the routers — that actually exchange packets

of information over physical cables [192] [118].

2. A set of communicating, geographically annotated Points of Presence (POPs)1.

3. A collection of Autonomous Systems (ASes)2, whose interconnections are business-

driven and result from multi- or bi-lateral commercial agreements [139].

4. A set of Internet eXchange Points (IXPs)3, through which ASes exchange their

customers’ traffic [35] [98].

Each level of abstraction actually yields a different network representation of the

Internet. Entities (nodes) are associated to routers, POPs, ASes, and IXPs respec-

tively. Analogously, relationships (links) are manifold and their nature varies greatly

among levels. These are physical interconnection cables, such as fiber optic cables,
1 A POP is a concentration of routers in a facility from which Internet connectivity is provided

to a geographical area such as city [58].
2 An AS is a body of routers owned and administered by a single company [139].
3 An IXP is a physical facility that allow ASes to interconnect directly to reduce costs or

increase bandwidth speed [71].

CHAPTER 1. INTRODUCTION 3

at the router- and POP-level of abstraction. Alternatively, these are business-driven

Border Gateway Protocol (BGP) sessions at the AS- and IXP-level [139].

Particularly critical to ensure global Internet connectivity is the AS-level network.

As we have eluded to above, ASes are sets of routers, each one owned by a sin-

gle company. The Internet, which is made of tens of thousands of ASes worldwide,

strongly relies on inter-AS connections. Indeed, the traffic must be able to flow from

(to) every AS, otherwise portions of the Internet would be unreachable. In order to al-

low inter-AS traffic to flow, AS owners agree to route the traffic directed to (originated

from) their routers. Agreements always have financial outcomes for the companies

owning ASes, e.g., revenue increases and cost reductions [90, 69, 123, 47, 195,

139]. A failure of the AS owners to negotiate and make business agreements will

inevitably cause portions of the Internet to become unreachable — regardless of

the physical underlying router-level interconnections. Historically, this event has oc-

curred several times, causing blackouts of significant parts of the Internet [79, 200,

94]. Outages have also occurred due to malicious attacks [43, 155, 11]. Therefore,

understanding the AS-level network is of high impact for the protection and deploy-

ment of the global Internet [105, 104, 179, 21, 105, 159, 150]. AS-level connectivity is

also essential to design routing algorithms [189, 21, 137, 204], assess infrastructure

resilience and robustness [178, 105, 153], and optimize content dissemination [174,

129, 8].

Another critical component to the relentless worldwide Internet connectivity is the

The Domain Name System (DNS) [120]. Similar in the spirit to an address-book, the

DNS is a naming system that locates hosts within the Internet — e.g., computers,

servers and routers. More precisely, it translates textual host names to Internet Pro-

tocol (IP) addresses. Hidden amid a jumble of other systems, the DNS is actually a

core Internet service. For example, it is used to translate every single name we type

in our web browser address bar to surf the web. The DNS has been the target of

several attacks [191, 84, 131]. Understanding and and analyzing the DNS is of fun-

damental importance for its protection [10, 181, 4, 202], as well as for the protection

of its users [18, 89, 171].

4 1.1. MOTIVATION

1.1.2 Network Algorithms and the Cost of Extracting Knowledge

We have seen that networks are widely used to analyze real systems. We have also

discussed the Internet as a representative example of a real-world system that can

effectively be modeled using networks. This might suffice to convince the reader of

the value of networks to understand modern-day systems. At this point we turn our

discussion to the challenges that hamper the use of networks for large-scale systems

analysis.

The effectiveness of networks as a tool for knowledge extraction needs, now more

than ever, to be traded-off with the extra complexity inherent in large-scale networks.

Networks are currently considered a big data problem [175] [185], particularly in dis-

ciplines such as engineering and computer science. At the present time, their sizes

are typically in the order of tens, or even hundreds, of thousands entities, which

are interrelated via a number of relationships which is often at least one order of

magnitude greater than the entities. This is the case for all the examples we have

cited above. There are also extreme cases of networks with millions (billions) of enti-

ties (relationships). Such extreme cases encompass online social platforms such as

Facebook [187] [53] and Twitter [103] [186], which contain millions of users linked via

billions of relationships.

It may be intuitive to the reader then, that the storage space required to main-

tain such massive networks may represent a real challenge. Indeed, finding efficient

ways to store large-scale networks is now a hot research topic, and has led to the

implementation of the so-called graph databases [162], among which we recall Ori-

entDB [184, 44] and Neo4j [198, 133]. Even when the space does not represent

an issue on its own, knowledge extraction typically remains challenging. Indeed, the

intrinsic complexity associated to network size often causes network algorithms to

suffer from scalability problems. In fact, the majority of network algorithms was de-

signed prior to the rise of big-data, in which massive amounts of information have

become available for analysis [122, 88, 208]. Only recently have researchers begun

addressing scalability issues by proposing network algorithms which exploit paral-

lel and distributed architectures such as multi-core Central Processing Units (CPUs)

[124], distributed systems [175] [126], and Graphics Processing Units (GPUs) [77].

CHAPTER 1. INTRODUCTION 5

Network algorithms are at the basis of new knowledge extraction, since they enable

key system features to be brought to light. Basically, such algorithms opportunely

traverse the network, seeking for particular patterns of relationships among entities,

often buried into the massive amount of existing entities and relationships.

1.1.2.1 Community Detection Algorithms

Community detection algorithms have become one of the most prominent classes

of network algorithms. They look for special groups of entities in the network —the

communities. A community is characterized by dense relationships among its enti-

ties, and sparser relationships between its entities and the remainder of the network.

Communities are now widely acknowledged as being fundamental to uncover hid-

den patterns in the structure and function of networks [59, 108, 156, 158, 164, 166,

20, 110, 112]. The main reason is that, in the vast majority of real systems known,

entities tend to organize in communities, and to establish relationships primarily with

the other members of the communities they belong to. This is the principle known as

homophily — the love for the similar — in social sciences [130] [117].

k-Clique Communities

Among all the definitions of communities proposed, k-clique communities are of keen

interest due to their unique features and broad applications [68, 81, 83, 82, 86, 85,

205, 34, 147]. As it can be inferred from the name, cliques are at the basis of these

communities. In some sense, a clique is the most tight concept of community, since

all possible pairs of nodes in a clique are connected each other. The underlying

clique structure of networks has been shown to strongly determine the structural

properties of networks [74].

This is the main motivation that has led us to focus on the k-clique communi-

ties [148], which are unions of cliques well-interwoven and reachable to each other

through paths involving other cliques only. To the best of our knowledge, that of k-

clique community is the only definition which is based on the concept of clique and

at the same time:

• Is formally defined, i.e. is based on network properties only and uses neither

heuristics nor function optimizations.

6 1.2. ORIGINAL CONTRIBUTIONS

• Is totally deterministic, i.e. there are no stochastic sources either in the definition

or in the detection algorithm.

• Allows overlap, i.e. communities can be partially (even almost completely) super-

imposed.

• Is local, i.e. each community exists independently of the other communities.

It is interesting to note that k-clique communities paved the way for a novel anal-

ysis of the Internet [68]. They have also been used to design efficient forwarding

algorithms for mobile telecommunications [81]. Social message forwarding schemes

based on k-clique communities have been proposed as well [83, 82]. In the social

sciences, k-clique communities are used, for example, to characterize the collabora-

tions between scientists, and the calls between mobile phone users [146]. In other

studies of note, they have been used to track knowledge evolution [86, 85].

Despite proven efficacy in advancing research, detecting k-clique communities

remains highly inefficient. Currently algorithms prevent k-clique communities to be

detected from large-scale networks. Some limited contributions have been made to

improve their efficiency [102]. Nevertheless, improvements turn out to be very lim-

ited. In general, k-clique community detection continues to be cumbersome. In ad-

dition, to the best of our knowledge, theoretical worst-case complexity analyses of

k-clique community detection algorithms have never been made before. Being able

to rigorously quantify space and time complexities would enable to estimate, a priori,

the amount of resources necessary to obtain these communities. Currently, algo-

rithms are merely executed, and one has only to wait (usually a very long time) for

a possible termination. No assumptions on the execution time can be made. Nei-

ther it can be determined in advance whether the algorithm will eventually produce

the desired communities — rather than exhausting all the computational resources

available without successfully produce the output.

1.2 Original Contributions

In this thesis we explore two areas of network research. We begin with the more

theoretical area of parallel network community detection algorithms. Then, we move

CHAPTER 1. INTRODUCTION 7

to the more practical area of the application of networks to the real-world Internet

system.

1.2.1 Parallel Network Community Detection Algorithms

Motivated by the unique features of the k-clique communities, and stimulated by

the challenges hindering their detection from large-scale networks, in this thesis we

contribute towards the study, analysis, and implementation of algorithms to detect

these communities in parallel.

Our main contributions in this area are the following:

• We theoretically analyze the state-of-the-art algorithms for k-clique community

detection, shedding light into previously unknown scalability issues.

• We present an innovative algorithm to obtain the connected components of net-

works which enables large-scale networks to be decomposed into an arbitrary

number of smaller networks.

• We propose novel parallel algorithms to detect k-clique communities, making the

source code freely available.

• We provide theoretical tight bounds on the space and time complexities of the

algorithms proposed.

• We validate the algorithms on real large-scale networks and empirically measure:

– Performances close to the theoretical speed limit;

– Dramatic improvements via comparisons with the state-of-the-art.

1.2.2 Network-Based Methodologies to Study the Internet

Stimulated by the high impact that its understanding may have to protect and deploy

resilient worldwide connectivity [179, 21, 105, 159, 150, 10, 181, 4, 202], we drill-

down into real large-scale data sets to analyze the Internet from two alternative points

of view. Specifically, we leverage on networks and network algorithms to investigate:

• The evolution of the AS-level network, which we combine with data from stock

markets.

• The Internet DNS traffic directed to the entire set of “.it” domains.

8 1.2. ORIGINAL CONTRIBUTIONS

Effective network models able to capture hidden features and key relationships are

proposed for the aforementioned cases. Methodologies are then devised to derive

new knowledge from networks. Validations are carried out using real data sets.

Our main contributions in the area of the application of networks to the Internet

can be summarized as follows.

Internet Companies, ASes, and Stock Markets

We propose a general methodology to investigate the synchronous cross corre-

lations of the connectivity features of nodes in evolving networks. To the best of

our knowledge, such correlations have never been studied before. We believe they

may be relevant for a better understanding of the complex techno-socio-economic

factors underlying modern systems. In addition, understanding these features may

contribute significantly to the design of novel evolutionary or predictive models. We

instantiate this methodology to study the dynamics of connectivity among Internet

companies, which physically interconnect to ensure global Internet access. We then

combine connectivity dynamics with historical data from stock markets, and produce

graphical representations to visually spot high correlations.

We find that geographically close Internet companies offering similar services are

driven by common economic factors. We also provide evidence on the existence and

nature of factors governing the dynamics of connectivity.

The Domain Name System (DNS)

We propose network models to effectively study the DNS traffic, which is necessarily

generated to translate domain names into their corresponding Internet IP addresses.

Relying on those network models, we also describe general methodologies that we

use, for example, to rank Internet domains and unveil their relationships. We carry

out validations on a large-scale, using DNS traffic records of all the Italian dot-it

domains.

We discover that the “interest” shown for Italian domains, quantified via network

metrics, follows a scale-free distribution [12]. A consequence is that very few domains

are the target of almost all the DNS traffic. We also demonstrate how the mere DNS

CHAPTER 1. INTRODUCTION 9

traffic, if opportunely modeled into a network, actually carries valuable information to

group similar sites and to spot trends and interests of the Internet community.

1.3 Organization of The Thesis

This thesis is organized as follows. In the next chapter we introduce and discuss

fundamental notions related to networks and network theory. This constitutes the

background on which this manuscript is built upon. The experienced reader may

choose to directly proceed to Chapters 3 and 4 where the main results are illustrated.

In Chapter 3 our original contributions in the field of parallel k-clique community

detection are presented. In Chapter 4 we present our original contributions in the field

of application of networks to real-world complex systems, with special emphasis on

the Internet. We attempted to make each of these two chapters self-contained insofar

as possible. Although we do not recommend it, one may decide to proceed directly

to the chapter of interest.

The thesis concludes with a summary and outlook in Chapter 5. The appendix A

contains the extended mathematical proofs of the theorems introduced in the thesis.

2

Background and Definitions

2.1 Networks: the Bridge between Raw Data and Knowledge

Networks are the building blocks upon which this thesis is built upon. In a certain

sense, they lie exactly in between raw data and refined knowledge. Indeed, raw data

is mapped into networks that, in turn, are opportunely processed via network algo-

rithms in order to gain new insights.

Formally, a network G = (V,E), is a pair of sets (V,E), with V the set of |V |

nodes and E ⊆ V × V the set of links. Networks are also known in the literature

as a graphs. Similarly, nodes and links are also referred to as vertices and edges,

respectively. In the remainder of this thesis we use all those terms interchangeably.

If edges (i, j) ∈ E are unordered pairs, then G is said to be undirected. Two

nodes i, j ∈ V , i 6= j, are said to be adjacent if (i, j) ∈ E. If G is directed, the

pairs (i, j) ∈ E are ordered and semantically represent “from i to j” relationships.

Adjacency relationships can be represented for each pair of nodes i and j (i, j =

1, · · · , |V |) with an |V |-square adjacency matrix A whose off-diagonal elements ai,j

are equal to 1 if (i, j) ∈ E or 0 otherwise. In-diagonal elements ai,i are always equal

to 0 when self-edges are not allowed. A can be generalized by associating real

numbers to its elements ai,j in order to encode general tie strengths between nodes

rather than binary adjacencies. In the latter case the graph is said to be weighted.

Whenever V can be divided into two disjoint sets R and D such that each edge joins

a node in R to a node in D, then G is said to be bipartite. Any bipartite graph can be

represented with an adjacency matrix of the form

12 2.2. CONNECTIVITY FEATURES OF NETWORK NODES

A =

 0 B

BT 0

 ,

where B = [br,d] is a matrix with |R| rows and |D| columns, uniquely identifying the

bipartite graph. Rows (columns) of B represent nodes in R (in D) and elements br,d

are equal to 1 whenever r and d are adjacent or 0 otherwise.

2.2 Connectivity Features of Network Nodes

In this section we discuss some of the connectivity features that can be used to

characterize a node in a network. We divide connectivity features into three groups,

namely: direct, local and global features.

2.2.1 Direct Connectivity

A connectivity feature is direct if it necessarily takes into account only node inter-

connections. More precisely, given a node n, a connectivity feature is local if it only

considers pairs (i, j) ∈ E such that i or j are equal to n. In other words, only the

edges that have n as an endpoint are taken into account.

The most common feature that belongs to this group is the degree. The degree of

node n, which we indicate with the symbol dn, counts the number of edges with n as

an endpoint. The degree is of immediate interpretation, since it tells the propensity

of a node to establish relationships with others. However, depending on the specific

characteristics of a graph, the definition of degree may be slightly extended.

If a graph is directed, two different degrees can be obtained for each node,

namely: the in-degree, and the out-degree. The in-degree (out-degree) counts the

number of edges that terminate (originate) on node n. Formally, the in-degree (out-

degree) count the number of pairs (i, j) ∈ E such that i = n (j = n). Similarly, if the

graph admits self-edges, we can consider the self-degree, that counts the number of

edges a node has with itself, i.e., the number of pairs (i, j) ∈ E such that i = j = n.

CHAPTER 2. BACKGROUND AND DEFINITIONS 13

For weighted graphs we can identify the intensity as a direct connectivity property,

that is, the sum of the weights of edges that originates from (terminates in) node n

— or both.

2.2.2 Local Connectivity

A connectivity feature is local if it necessarily takes into account only: node intercon-

nections; and interconnections between node neighbors. The set of neighbors of a

node n is formally expressed as N(n) = {j|(n, j) ∈ E ∧ (j, n) ∈ E}.

One common connectivity feature, that we can place in this category, is the aver-

age neighbor degree [136]. Formally, the average neighbor degree knnn for node n

reads

knnn =
1

kn

∑
i∈N(n)

ki. (2.1)

This feature gives indication on the propensity of node neighbors in establishing

relationships with the other members of the network. It can also be interpreted as

the attitude of a node to establish connection with hubs, i.e., highly connected nodes

in the network.

Another well-known connectivity feature that we can place in this category is the

clustering coefficient [197]. This feature gives and indication of the propensity of the

neighbors of a node to interact each other. When all the neighbors are interacting

each other — that is, when they form a clique — then the clustering coefficient has

the maximum value equal to 1. Specifically, for undirected graphs, the clustering

coefficient ccn of node n reads

ccn =
|{(i, j)|i, j ∈ N(n) ∧ (i, j) ∈ E}|

1/2 · dn(dn − 1)
. (2.2)

The product 1/2 · dn(dn − 1) is used as a normalization factor, since it equals the

maximum number of edges that can exist between dn nodes in an undirected graph.

14 2.2. CONNECTIVITY FEATURES OF NETWORK NODES

In this case, i.e., when a group of nodes form a complete subgraph, it is said to be a

clique.

Indeed, cliques are another relevant feature that can be placed among local con-

nectivity features. In general, they are a good indicator for an high number of interac-

tions among their members — actually, it is the maximum number possible. Formally,

a k-clique, that is, a clique with size k, is a subset of the vertex set c ⊆ V such that

there is an edge (i, j) ∈ E between any two nodes i, j ∈ c and |c| = k. The size of

a clique is very important in quantifying its relevance. The larger the size, the higher

the number of interactions. Broadly speaking, large cliques are symptoms of strongly

interacting groups. If, as we have done for the other connectivity features, we focus

on the single node, we can count the number of cliques it belongs to as a local con-

nectivity property. Indeed, this may be a good signal of node propensity in having

groups of interests — e.g., clubs, friends, businesses, partners, etc. Similarly, if we

want to exclude small groups, we can count only cliques greater than a given size.

This, for example, the approach followed by Palla et al. [148].

The number of 3-cliques a node has, that is known in the literature also as the

number of triangles, is, of course, another connectivity feature of the local kind. Trian-

gles have been shown to be extremely relevant, especially in (online) social networks

to predict future relationships formation [119].

2.2.3 Global Connectivity

A connectivity feature is global if it necessarily takes into account: node interconnec-

tions; interconnections between node neighbors; between node neighbors’ neigh-

bors; and so on, possibly until all the nodes in the network have been considered.

Broadly speaking, such features are able to characterize the node in the context of

the whole network.

Among global features, we cite the eigenvector centrality [24] xn for a node n,

which is defined as

xn = λ−1
∑

j∈N(n)

xj = λ−1
∑
j

an,jxj . (2.3)

CHAPTER 2. BACKGROUND AND DEFINITIONS 15

The previous formula expresses the eigenvector centrality of n as the sum of the

eigenvector centrality of its neighbors — up to a factor of scale. This is a recursive

formula, since neighbors eigenvector centrality depends, in turn, on the eigenvector

centrality of their neighbors, and so on. Intuitively, the higher the centrality, the higher

the relevance of the node in the network. Using matrix notation, we can rewrite the

previous formula as the eigenvector equation

Ax = λx. (2.4)

In general, many different eigenvectors exists. However, if we choose the largest

eigenvalue, then, all the eigenvector components are positive (Perron-Frobenius the-

orem) and the feature can be seen as representative of node relevance.

Many other global connectivity features, based on the concept of centrality, exist

in the literature. For the sake of example, we mention the betweenness centrality

[27]. This is a fundamental feature, since it counts the number of shortest paths in

the network that traverse the node. The higher this feature, the more central the

position of the node in the network.

Among other global connectivity features we also recall the coreness. This feature

is related to the k-cores of a graph [7]. A k-core is a maximal subgraph of G in which

each node has at least degree k — maximal means that we cannot include any other

node in the subgraph and preserve the property on the minimum degree. From this

definition it follows that k-cores are nested, i.e., a 5-core is contained in a 4-core that,

in turn, is contained in a 3-core, and so on. A node n, that belongs to a k-core, but

not to a (k + 1) core, is said to have coreness k. An high coreness is, reasonably,

participating to the most densely interconnected zones of the network. Cores have

been shown, for example, to be crucial to the spreading of information in networks

[96].

Another global connectivity feature that somehow related to the coreness, is the

denseness. Similarly to the k-cores, we can define the k-denses of a graph [169].

A k-dense is a maximal subgraph of G, in which each pair of adjacent nodes has

at least k common adjacent nodes in the subgraph. Again, k-denses are nested. In

16 2.3. COMMUNITY DETECTION IN NETWORKS

Feature kcliques infomod infomap blondel kdense oslom gce

weighted networks - - + + - + -

directed networks - - + - - + -

overlapping communities + - - - - + +

hierarchical communities + - - + + + -

deterministic + - - - + - -

optimization based - + + + - + +

arbitrary thresholds - + + - - + +

Table 2.1. Features of community detection algorithms

addition, a k-dense is a subset of a k-core. A node n is said to have denseness k if it

belongs to a k-dense but not to a (k + 1) dense. Denses have been used to identify

the nucleus of the Internet [65].

2.3 Community Detection in Networks

The number of network community detection algorithms that have been developed

during last years is huge. Therefore, a comparative analysis of all these algorithms

is not feasible and a selection of a representative group is necessary. We choose a

representative group in the remainder of this section, whereas we thoroughly discuss

k-clique community detection algorithms in the next chapter.

In order to identify a significant group, we have chosen three of the best per-

forming algorithms analysed in [106]. The first two were proposed by Rosvall and

Bergstorm [164] [166], and the third by Blondel et al. [20]. Since these three algo-

rithms introduce heuristics and rely on optimization problems, we also selected an-

other algorithm solely based on the k-denses of a graph (Saito et al. [169]). Finally,

we have also chosen two recent algorithms for the detection of overlapping com-

munity structure (Lancichinetti et al. [110] and Lee et al. [112]). Below we provide a

short description of each algorithm considered. Their main features are summarized,

and compared with k-clique community detection (kcliques), in Tab. 2.1.

CHAPTER 2. BACKGROUND AND DEFINITIONS 17

Structural Algorithm by Rosvall and Bergstorm

(infomod) [164]. A description of a network by means of its communities can be

viewed as a lossy compression of network topology. Here, the process of detect-

ing communities is turned into the information-theoretical problem of optimally com-

pressing network structure. Specifically, information about the original network de-

scription X is encoded as a compressed description Y , which tells most of the orig-

inal X — Y is chosen with the aim of maximizing the mutual information between

network and description. Simulated-annealing is used to accomplish such optimiza-

tion since an exhaustive search is computationally infeasible.

The implementation of this algorithm is open-source and freely available at [163].

Dynamic Algorithm by Rosvall and Bergstorm

(infomap) [166]. This algorithm is in the spirit of infomod . Here communities are

identified by finding an optimally compressed description of how information flows on

the network. The rationale is that a group of nodes among which information flows

quickly can be grouped into a single community. The optimal compressed description

is obtained by minimizing the minimum description length [161] [72] of a random

walk, which is used as a proxy for information flow. A greedy search algorithm is

used to obtain the results which are refined with a simulated-annealing technique.

The source code of this algorithm is freely available and can be downloaded from

[165].

Fast Modularity Optimization by Blondel et al.

(blondel) [20]. This heuristic algorithm is based on a local modularity [134] optimiza-

tion in the neighborhood of each node. This algorithm is divided into two phases. The

optimization is carried out in the first phase in order to identify communities — this

process terminates when a local maxima of the modularity is attained. In the second

phase, communities are replaced by super-nodes and the procedure is repeated it-

eratively until modularity stops increasing.

Source code of this algorithm is freely available for download at [19].

18 2.3. COMMUNITY DETECTION IN NETWORKS

k-Dense Method by Saito et al.

(kdense) [169]. This algorithm deterministically extracts k-dense communities from a

given network. k-dense communities are defined only according to their topological

properties and their extraction do not require function optimizations. These commu-

nities are well-interconnected sub-networks such that each pair of adjacent nodes

in a community must share a minimum number of neighbors within that community.

More precisely, a k-dense community D(k) is a sub-network such that each pair of

adjacent nodes in D(k) has at least (k − 2) neighbors in common in D(k).

Since the implementation of this algorithm is not publicly available, we implemented

this algorithm on our own.

Order Statistics Local Optimization Method by Lancichinetti et al.

(oslom) [110]. This algorithm is based on the local optimization of a fitness function

expressing the statistical significance of communities with respect to random fluctu-

ations — a network community is statistically significant if it is unlikely to find it in a

random network with the same degree distribution. Basically, oslom consists of the

following sequential phases. First, it looks for significant communities by minimizing

the statistical significance. Then, it analyses the set of communities obtained, trying

to detect their internal structure or possible unions thereof. Finally, it detects the hi-

erarchical structure of the communities.

The implementation of oslom is open-source and available at [109].

Greedy Clique Expansion by Lee et al.

(gce) [112]. This algorithm selects maximal cliques as initial seeds and then adopt

the general strategy of expanding these seeds via greedy local optimization of a

fitness function. The function used here, introduced by Lancichinetti et al. in [107],

is simply the ratio between community’s internal and total degree. Therefore, it well

captures the generally agreed concept of community as of a group of nodes highly

interconnected each other but relatively less interconnected with the remainder of

the network.

CHAPTER 2. BACKGROUND AND DEFINITIONS 19

Source code of gce implementation is publicly available and can be downloaded from

[111].

3

Parallel Network Community Detection Algorithms

3.1 What, Why and How of k-Clique Communities

Networks — in the sense in which they are used in this thesis — are graphs modeling

real-world complex systems. Detecting communities from these networks may be

decisive in the understanding of their structural and functional properties [60] [148].

Examples, which we have thoroughly discussed in the introductory chapter of this

thesis, include, but are not limited to, the Internet [68] and the World Wide Web [101]

as well as mobile phone [142], collaboration [62], citation [38] and biological [62]

networks.

Cliques can be thought of as being building blocks of networks. In fact, structural

properties of networks can be viewed as consequences of their underlying clique

structure [74]. In addition, cliques represent the most tight concept of community

— all possible pairs of nodes in a clique are interacting each other. Those are the

main reasons behind the widespread diffusion of k-clique communities as a tool to

investigate the structure and function of networks. Indeed, k-clique communities are

unions of cliques well-interwoven and reachable each other through paths involving

other cliques only. In the introduction of this thesis we discuss the unique features of

k-clique communities and present some real-world use cases. Here we recall some

examples for the sake of completeness. For instance, in [81] the authors identify

k-clique communities among the participants of Infocom06 and the students in the

MIT Media Laboratory and exploit this information to design efficient forwarding al-

gorithms for mobile networks. Similarly, in [83] the authors propose a distributed

22 3.1. WHAT, WHY AND HOW OF K-CLIQUE COMMUNITIES

k-clique community detection algorithm to be used for social-based message for-

warding. k-clique communities also find application in social sciences. For example,

in [146] they are used to capture the relationships characterizing the collaboration

between scientists and the calls between mobile phone users.

The first algorithm for extracting k-clique communities is the Clique Percolation

Method (CPM) [149], which is prohibitively memory and time demanding. To the

best of our knowledge, this had prevented k-clique communities from being extracted

from large-scale networks such as those considered in this thesis. Here, we adopt

a theoretical approach to shed light on CPM scalability issues. Then, we design

the novel CPM On Steroids (COS) parallel algorithm. COS is the refinement of a

working proof-of-concept, which is presented first in order to clarify the problem of

parallel k-clique community detection. COS exploits parallel processing to reduce

execution time and has a low memory footprint. Its maximum degree of parallelism,

unbounded, user-configurable and input-independent, enables hardware resources

to be used efficiently. In addition, we provide analytical tight upper bounds on its ex-

ecution time and space requirements, which are given as function of: i) the number

of maximal cliques in the network; ii) the size of the maximal cliques; and iii) the

number of processors available. These bounds prove that COS has a linear space

dependence on the number of maximal cliques and a worst-case execution time in-

versely proportional to the number of processors. By means of the aforesaid bounds

we can answer questions such as “Is memory available on this hardware enough

to extract k-clique communities from this network?” or “If the number of processors

installed on a particular machine is doubled, would COS halve its execution time?”.

Therefore, we are providing a framework with which it is possible not only to extract

k-clique communities efficiently, but also to estimate in advance the required amount

of computing resources required. These theoretical bounds are validated in a se-

ries of experiments. We experimentally measured a linear speedup: COS execution

time halves when the number of processors it uses is doubled. Dramatic reductions

in execution time and memory footprint are brought to light by comparisons with

other state-of-the-art k-clique community detection algorithms. The implementation

of COS is open-source and freely available [66].

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 23

Another major contribution of this thesis is the innovative CONNECted compo-

nenTs MErging (CONNECT_ME) algorithm. By taking advantage of CONNECT_ME,

it is possible to split a network into an arbitrary number of subnetworks, and still be

able to obtain its connected components. This novel low-complexity algorithm plays

a key role in COS, by combining together partial results from all processors.

The rest of this chapter is structured as follows. The next section contains a brief

overview of the efforts toward efficient community detection, with special emphasis

on k-clique communities. In Sect. 3.3 we formulate the problem of k-clique com-

munity detection. We discuss CPM in Sect. 3.4, highlighting its scalability issues.

In Sect. 3.5 we present the novel CONNECT_ME technique. A working proof-of-

concept parallel k-clique community detection algorithm and its worst-case complex-

ities are presented in Sect. 3.6, whereas in Sect. 3.7 we propose COS and two

enhancements at the basis of its functioning. In Sect. 3.8 we examine algorithms

performances via experiments. The chapter concludes with a summary in Sect. 3.9.

3.2 Related Work

Traditionally, the relevance of the discovered network communities has been traded

off with the complexity required for their extraction. For example, k-core communities

[169] can be obtained with low complexity [15] but they are loosely-connected and

non-overlapping. Conversely, k-clique communities [148] are fine-grained, overlap-

ping and tightly-connected but their extraction is extremely demanding in terms of

computational resources [149]. Very little work has been done to avoid trading off

the quality of the extracted communities for complexity. Parallelism has been pro-

posed in [207] and [168] as a means to alleviate computational costs. In [207] the

authors heuristically evaluate the propinquity, i.e. the probability that a pair of nodes

is involved in a coherent community. They update the original network by adding

(removing) edges if the propinquity is higher (lower) than a given threshold. A paral-

lel algorithm is used to update propinquity incrementally, in order to reflect network

changes. Through this, they were able to extract meaningful communities from the

huge Wikipedia linkage network. Rather than introducing a new definition of commu-

nity, in [168] the authors propose a algorithm to reduce the size of the networks. In

24 3.2. RELATED WORK

parallel, they use an heuristic to locate quasi-cliques and assign them as nodes in

a reduced graph to be used with standard community detection algorithms. These

reduced graphs have a size which is approximately one half of the original size.

Alternatively than exploiting parallelism, computational costs can be mitigated by de-

signing efficient heuristics and greedy local function optimizations. To the best of our

knowledge, algorithms proposed in [20] and [166] are two of the fastest (and best-

performing according to [106]) optimization-based community detection algorithms.

We analyse their performances on real-world network data in Sect. 3.8. Their key

concepts are explained in Sect. 2.3.

The first k-clique community detection algorithm is the Clique Percolation Method

(CPM) [149]. It first lists all the maximal cliques from the input network and then

analyses the overlap between each possible pair of them. The number of maximal

cliques in a network could be exponential with the number of nodes [132]. Neverthe-

less, none of the real-world networks we studied has a number of maximal cliques

greater than few millions — this means that their actual number is from tens to tens

of thousands orders of magnitude smaller that their maximum theoretical number.

As a consequence, we were able to obtain the whole list of maximal cliques from

the networks considered in this thesis in at most a couple of minutes with a serial

algorithm [29]. Therefore, we do not add anything new to this point and we refer the

interested reader to [22, Sect. 5] for a review, or to [49], [170] and [206] for parallel

algorithms. The real challenge is finding an efficient way to store and analyse the

overlap between maximal cliques. In Sect. 3.4 we show that this has a complexity

proportional to the square of the number of maximal cliques.

In [102] the first effort towards efficient k-clique community detection was made. The

authors proposed the Sequential Clique Percolation (SCP) algorithm, which enables

k-clique communities to be detected at multiple weight thresholds in a single run.

Although SCP can detect communities on weighted networks, it cannot produce k-

clique communities for each possible k in a single execution. Moreover, since it enu-

merates cliques rather than maximal cliques, it only works well on sparse networks.

In fact, as also highlighted by the authors, given that a clique with size h contains(
h
k

)
≈ hk/k! smaller cliques with size k, the huge number of cliques it generates on

networks with fairly large maximal cliques — as those considered in this thesis —

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 25

prevents communities to be obtained in a reasonable amount of time.

In [70] we drew our first ideas on how to enhance CPM and proposed a simple paral-

lel k-clique community detection algorithm. Although this algorithm is parallel and has

a reduced memory footprint with reference to CPM, it does have several drawbacks.

For example, its maximum degree of parallelism is: i) upper bounded by the size of

the largest maximal cliques; ii) strongly affected by maximal cliques distribution; and

iii) a decreasing function of the execution time.

3.3 Problem Formulation

Let G = (V,E) be an undirected, unweighted graph without isolated nodes (vertices)

and self-edges. V is its vertex set and E ⊆ V × V its edge set. A k-clique in G is

a subset of the vertex set c ⊆ V such that there is an edge (i, j) ∈ E between any

two nodes i, j ∈ c and |c| = k. A clique is a k-clique for some k. Two k-cliques are

adjacent if they have (k − 1) nodes in common. Based on this notion of adjacency,

we can define a k-clique community as follows.

Definition 1. A k-clique community is the union of all the k-cliques that can be

reached by each other through a series of adjacent k-cliques.

Figure 3.1 shows a graph with its k-clique communities at k = 3 and k = 4. At k = 2

there exists only one community, corresponding to the whole graph.

Now observe that each h-clique always contains a number
(
h
k

)
of adjacent k-

cliques for each k ≤ h. In other words, an h-clique is (in a) k-clique community for

each k ≤ h. For example the clique {1, 2, 3, 4} of Fig. 3.1 contains
(
4
3

)
= 4 adjacent

3-cliques: {1, 2, 3}, {1, 2, 4}, {1, 3, 4} and {2, 3, 4} and therefore is in a 3-clique com-

munity. Similarly, it has
(
4
2

)
= 6 adjacent 2-cliques and hence is also in a 2-clique

community.

Furthermore, if the h-clique is not contained in any other larger clique, i.e. it is

a maximal h-clique, it belongs only to k-clique communities with k ≤ h. Indeed, a

maximal clique — that is, a maximal k-clique for some h — cannot share a number

of nodes greater than or equal to its size. Otherwise it would be contained in a larger

clique and, in turn, it would not be maximal. For instance clique {6, 9, 10} of Fig. 3.1,

26 3.3. PROBLEM FORMULATION

5

9

8 7

10

6

1

4 3

2

3-clique
communities

4-clique
community

0 1 2 3 4 5

0

1

2

3

4

5

4 3 0 0 0 1

3 4 0 0 0 0

0 0 3 2 1 1

0 0 2 3 2 1

0 0 1 2 3 0

0 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 0 0

c2

c3

c4

c1

c0

2

3

4
1

0
2

3

4
1

0

H1 H2

2 310 4 210 43

2 3 410

210 43

2 4310

2 3 410

10 2 3 4

Fig. 3.1. A graph with its k-clique communities for k = 4 and k = 3.

which is maximal since there not exists another larger clique containing it, is in a

3-clique community as well as in a 2-clique community, but it cannot belong to any

community with size greater than or equal to 4. Instead, the clique {3, 4, 5}, which is

not maximal, belongs also to a 4-clique community. These observations allow us to

formulate an equivalent definition of k-clique community.

Definition 2. A k-clique community is the union of all the maximal h-cliques, k ≤ h,

that can be reached by each other through a series of adjacent k-cliques.

Accordingly, the problem of k-clique community detection on networks (a) is to

find all the possible unions of maximal cliques satisfying Def. 2; equivalently, (b) it

is to find all the possible unions of cliques satisfying Def. 1. In the remainder of this

thesis we concentrate on formulation (a).

From formulation (a), it follows that the lower the k, the higher the number Lk

of maximal h-cliques, k ≤ h, among which to search for k-clique communities. If

lk denotes the number of maximal k-cliques in G, we can express this number as

Lk =
∑kmax

h=k lh, where kmax is the maximal cliques maximum size. Lk is maximum

for k = 2. In fact, L2 is equal to the number l =
∑
k lk of maximal cliques in G.

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 27

c0 = {1,2,3,4}
c1 = {2,3,4,5}
c2 = {6,9,10}
c3 = {6,7,9}
c4 = {7,8,9}
c5 = {1,6}

(a)

5

9

8 7

10

6

1

4 3

2

3-clique
communities

4-clique
community

0 1 2 3 4 5

0

1

2

3

4

5

4 3 0 0 0 1

3 4 0 0 0 0

0 0 3 2 1 1

0 0 2 3 2 1

0 0 1 2 3 0

1 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 0 0

c2

c3

c4

c1

c0
2

3

4
1

0
2

3

4
1

0

H1 H2

2 310 4 210 43

2 3 410

210 43

2 4310

2 3 410

10 2 3 4

F1 F2

0 1 2 3 4 5

0

1

2

3

4

5

4

3 4

0 0 3

0 0 2 3

0 0 1 2 3

1 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

3 0 0 0 1

0 0 0 0

2 1 1

2 1

0

0

0

0

0

2

1

1

-

...
...

b

b+1

b+2

b+3

b+4

b+5

b+6

b+7

A W=8 bytes buffer,
starting at address b.

SLIDE(1) enables
filled elements in
rows 1-2 to be
accessed through
the buffer

A 6x6 matrix,
with indices in [0,5]

(b)

Fig. 3.2. (a) The l = 6 maximal cliques c0, · · · , c5 extracted from the graph in Fig. 3.1. (b) The
resulting clique-clique overlap matrix. Maximal clique ci is associated with row (column) i.

3.4 Scalability Issues of k-Clique Community Detection

In this section we discuss the Clique Percolation Method (CPM) algorithm, pointing

out its scalability issues. We partition CPM into three subsequent phases for the

sake of simplifying the presentation, namely: Maximal Cliques Listing; Clique-Clique

Overlap Matrix Construction; and k-Clique Community Extraction. However, as al-

ready discussed in Sect. 3.2, maximal cliques listing does not represent an issue

when dealing with real-world networks, at least with those considered in this thesis.

For that reason, in the remainder of this section we concentrate only on the latter two

phases.

Clique-Clique Overlap Matrix Construction

Given the whole list of maximal cliques, CPM builds a clique-clique overlap matrix

as described in [52]. Each maximal clique is associated with a row (column) and

the elements of the matrix represent the number of shared nodes between the cor-

responding maximal cliques. In the remainder of this thesis, we assume maximal

clique ci to be always associated with row (column) i. Figure 3.2(a) shows the list of

the l = 6 maximal cliques extracted from the graph in Fig. 3.1, whereas Fig. 3.2(b)

28 3.4. SCALABILITY ISSUES OF K-CLIQUE COMMUNITY DETECTION

shows the resulting clique-clique overlap matrix. The clique-clique overlap matrix is

symmetric and diagonal elements represent the size of the maximal cliques.

It is clear that with a standard storage format, the space complexity of the matrix

scales quadratically with l — in spite of simple optimizations that take into account,

for example, the symmetry of the matrix. More efficient storage formats have been

proposed for sparse matrices [45], however experimental results have shown that

clique-clique overlap matrices can be very dense, i.e. have almost all non-zero el-

ements. This quadratic dependence on l represents the first scalability issue that

makes CPM inapplicable on networks modeling real-world systems. The second is-

sue concerns the worst-case time complexity for computing the clique-clique overlap

matrix which is in Ω(l2) since overlap has to be computed for each of the
(
l
2

)
possible

pairs of maximal cliques.

k-Clique Community Extraction

CPM extracts k-clique communities starting from the clique-clique overlap matrix as

follows. It i) puts at 1 every on-diagonal element greater than or equal to k and every

off-diagonal element greater than or equal to (k − 1); then, it ii) zeroes each other

element, obtaining a binary matrix. Finally, it extract communities by carrying out a

component analysis of this binary matrix.

Rather than accomplishing such analysis, we can relate k-clique communities

to the connected components of a graph Gk, which we call henceforth the clique-

clique graph. More precisely, if Gk = (Vk, Ek) is a graph whose adjacency matrix

is obtained according to i) and ii) above, and if no node whose row (column) has

all zero elements is in Vk, then k-clique communities are the unions of maximal

cliques associated with nodes in the connected components of Gk. Indeed, it is easy

to check that i) and ii) assure that an edge exists between two nodes of Gk iff the

corresponding maximal cliques have size greater than or equal to k and share at

least (k − 1) nodes. Figure 3.3(a) shows the binary matrix obtained from the clique-

clique overlap matrix of Fig. 3.2(b) for k = 3. The row with index 5 contains only

zeros since it relates to c5 = {1, 6}, which cannot share (k − 1) = 2 nodes with any

other maximal clique. The resulting clique-clique graph G3 = (V3, E3) is shown in

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 29

5

9

8 7

10

6

1

4 3

2

3-clique
communities

4-clique
community

0 1 2 3 4 5

0

1

2

3

4

5

4 3 0 0 0 1

3 4 0 0 0 0

0 0 3 2 1 1

0 0 2 3 2 1

0 0 1 2 3 0

1 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 0 0

c2

c3

c4

c1

c0
2

3

4
1

0
2

3

4
1

0

H1 H2

2 310 4 210 43

2 3 410

210 43

2 4310

2 3 410

10 2 3 4

F1 F2

0 1 2 3 4 5

0

1

2

3

4

5

4

3 4

0 0 3

0 0 2 3

0 0 1 2 3

1 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

3 0 0 0 1

0 0 0 0

2 1 1

2 1

0

0

0

0

0

2

1

1

-

...
...

b

b+1

b+2

b+3

b+4

b+5

b+6

b+7

A W=8 bytes buffer,
starting at address b.

SLIDE(1) enables
filled elements in
rows 1-2 to be
accessed through
the buffer

A 6x6 matrix,
with indices in [0,5]

(a)

5

9

8 7

10

6

1

4 3

2

3-clique
communities

4-clique
community

0 1 2 3 4 5

0

1

2

3

4

5

4 3 0 0 0 1

3 4 0 0 0 0

0 0 3 2 1 1

0 0 2 3 2 1

0 0 1 2 3 0

1 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 0 0

2

3

4

1

0
2

3

4
1

0
2

3

4
1

0

H1 H2

2 310 4 210 43

2 3 410

210 43

2 4310

2 3 410

10 2 3 4

F1 F2

0 1 2 3 4 5

0

1

2

3

4

5

4

3 4

0 0 3

0 0 2 3

0 0 1 2 3

1 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

3 0 0 0 1

0 0 0 0

2 1 1

2 1

0

0

0

0

0

2

1

1

-

...
...

b

b+1

b+2

b+3

b+4

b+5

b+6

b+7

A W=8 bytes buffer,
starting at address b.

SLIDE(1) enables
filled elements in
rows 1-2 to be
accessed through
the buffer

A 6x6 matrix,
with indices in [0,5]

(b)

Fig. 3.3. (a) The binary matrix obtained from the clique-clique overlap matrix of Fig. 3.2(b) for
k = 3. (b) The resulting clique-clique graph G3.

Fig. 3.3(b). It has |V3| = L3 = 5 nodes. Edges represent the condition of having 2

nodes in common. The two connected components of G3, highlighted with different

colors, contain maximal cliques corresponding to the two 3-clique communities of G.

3.5 Algorithms to Extract and Merge Connected Components

In Sect. 3.4 we have shown a relation between k-clique communities and the con-

nected components of a graph. Here we propose the innovative CONNECted com-

ponenTs MErging (CONNECT_ME) algorithm, which enables the connected com-

ponents of the union of two graphs to be obtained without knowing their topologies.

CONNECT_ME will be used in the next sections when combining parallel proces-

sors’ partial results. Since CONNECT_ME has to manipulate disjoint sets to effi-

ciently maintain the connected components, in this section we also briefly discuss

the set union problem and a well-known algorithm for its solution.

Connected Components as a Solution to the Set Union Problem

Connected Components, which are disjoint sets of nodes, can be obtained using any

algorithm for solving the set union problem [182]. This problem consists in maintain-

ing a collection F of disjoint sets under an intermixed sequence of findF and unionF

30 3.5. CONNECTED COMPONENTS ALGORITHMS

Algorithm 1: MERGE_SETS(F, p, q)
Input: A collection F of disjoint sets and two elements p and q
Ensure: sets containing p and q are merged in F

1 begin
2 P ← findF (p)
3 Q← findF (q)
4 if P 6= Q then
5 unionF (P,Q)

5

9

8 7

10

6

1

4 3

2

3-clique
communities

4-clique
community

0 1 2 3 4 5

0

1

2

3

4

5

4 3 0 0 0 1

3 4 0 0 0 0

0 0 3 2 1 1

0 0 2 3 2 1

0 0 1 2 3 0

0 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 0 0

c2

c3

c4

c1

c0

2

3

4
1

0
2

3

4
1

0

H1 H2

2 310 4 210 43

2 3 410

210 43

2 4310

2 3 410

10 2 3 4

(a)

5

9

8 7

10

6

1

4 3

2

3-clique
communities

4-clique
community

0 1 2 3 4 5

0

1

2

3

4

5

4 3 0 0 0 1

3 4 0 0 0 0

0 0 3 2 1 1

0 0 2 3 2 1

0 0 1 2 3 0

0 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 0 0

c2

c3

c4

c1

c0

2

3

4
1

0
2

3

4
1

0

H1 H2

2 310 4 210 43

2 3 410

210 43

2 4310

2 3 410

10 2 3 4

(b)

5

9

8 7

10

6

1

4 3

2

3-clique
communities

4-clique
community

0 1 2 3 4 5

0

1

2

3

4

5

4 3 0 0 0 1

3 4 0 0 0 0

0 0 3 2 1 1

0 0 2 3 2 1

0 0 1 2 3 0

0 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 0 0

c2

c3

c4

c1

c0

2

3

4
1

0
2

3

4
1

0

H1 H2

2 310 4 210 43

2 3 410

210 43

2 4310

2 3 410

10 2 3 4

(c)

5

9

8 7

10

6

1

4 3

2

3-clique
communities

4-clique
community

0 1 2 3 4 5

0

1

2

3

4

5

4 3 0 0 0 1

3 4 0 0 0 0

0 0 3 2 1 1

0 0 2 3 2 1

0 0 1 2 3 0

0 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 0 0

c2

c3

c4

c1

c0

2

3

4
1

0
2

3

4
1

0

H1 H2

2 310 4 210 43

2 3 410

210 43

2 4310

2 3 410

10 2 3 4

(d)

Fig. 3.4. Dynamic evolution of a collection F of disjoint sets.

operations. findF (p) returns the canonical element of the set containing element p

— the canonical element is an arbitrary but unique element identified within each set,

which is used to represent the set. unionF (P,Q) combines the sets whose canonical

elements are P and Q into a single set, and make P the canonical element of the

new set.

If we initialize F with |V | singleton sets {v} such that v ∈ V , we can obtain

the connected components of a graph in F after MERGE_SETS(F, p, q) has been

called on each edge (p, q) ∈ E [51]. MERGE_SETS, which is presented in Algo-

rithm 1, retrieves the canonical elements P and Q of the sets containing p and q via

two findF operations. If P 6= Q, then p and q are in two different sets, and they are

merged with a unionF .

Figure 3.4 shows the dynamic evolution of a collection F of disjoint sets re-

sulting from the call of MERGE_SETS(F, p, q) on each edge (p, q) of the clique-

clique graph G3 in Fig. 3.3(b). Initially F contains five singletons, one for each

node of the graph (Fig. 3.4(a)). Then, MERGE_SETS(F, 0, 1), for the edge (0, 1),

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 31

is called the on the collection of singleton sets. The call determines the execution

of findF (0) and findF (1), which returns canonical elements 0 and 1, respectively.

Hence, unionF (0, 1) is executed as well, resulting in the collection in Fig. 3.4(b).

The second call is MERGE_SETS(F, 2, 3), for the edge (2, 3), that alters the state

of the collection from Fig. 3.4(b) to Fig. 3.4(c). Finally, MERGE_SETS(F, 3, 4) is

called for the edge (3, 4). The call causes the execution of findF (3) and findF (4),

which returns canonical elements 2 and 4, respectively. Thus, unionF (2, 4) alters

the collection to the state in Fig. 3.4(d). In this final state, disjoint sets in F are the

connected components of G3.

To the best of our knowledge, the fastest algorithm for the solution of the set

union problem is presented and analysed in [183]. This algorithm represents each

set in F as a rooted tree1 whose nodes are the elements in the set and whose

root is the canonical element. Each node has an outgoing link to its father -node

— itself if the root — in the tree. findF (p) returns the root of the tree containing p

and unionF (P,Q) combines the trees whose roots are P and Q, by making P the

new root of Q. If two simple optimization rules are applied, this algorithm reaches an

O(fα(f, g)) worst-case time complexity for f operations on g initially singleton sets,

assuming f = Ω(g). α is a functional inverse of Ackermann’s function. For i, j ≥ 1 let

A(i, j) be defined by:

A(1, j) = 2j for j ≥ 1,

A(i, 1) = A(i− 1, 2) for i ≥ 2,

A(i, j) = A(i− 1, A(i, j − 1)) for i, j ≥ 2.

Then, α (f, g) = min{i ≥ 1 : A(i, bf/gc) > log2g}. This function grows very slowly

and for all practical purposes is a constant no larger than four [182].

An Algorithm to Merge the Connected Components

We now present CONNECT_ME which, starting from the connected components

of two graphs H1 = (V1, E1) and H2 = (V2, E2), V2 ⊆ V1, enables the con-
1 In the remainder of this section we use rooted trees to graphically represent disjoint sets.

32 3.5. CONNECTED COMPONENTS ALGORITHMS

Algorithm 2: CONNECT_ME(F1, F2)

Input: Two collections of sets, F1 and F2, corresponding to the connected
components of the graphs H1 = (V1, E1) and H2 = (V2, E2), V2 ⊆ V1,
respectively.

Ensure: Disjoint sets in F1 correspond to the connected components of
H1 ∪H2

1 begin
2 foreach u ∈ V2 do
3 U ← findF2(u)
4 if U 6= u then
5 MERGE_SETS(F1, U, u)

nected components of their union H1 ∪ H2 to be obtained. If F1 and F2 contain

disjoint sets equivalent to the connected components of H1 and H2 respectively,

CONNECT_ME(F1, F2), produces the connected components of the union of the

two graphs without any information neither on the edges E1 nor on the edges E2.

CONNECT_ME is described in Algorithm 2. For each element u ∈ V2, the canon-

ical element U of the set containing u is found in F2 and both U and u are merged

in F1. The basic idea behind this algorithm is: “given that u and U are in the same

connected component of H2, they must also be in the same connected component

of H1 ∪H2”.

CONNECT_ME is formalized in the following theorem.

Theorem 1. If F1 and F2 are collections of sets corresponding to the connected com-

ponents of graphsH1 = (V1, E1) andH2 = (V2, E2), V2 ⊆ V1, thenCONNECT_ME(F1, F2)

ensures F1 contains sets corresponding to the connected components of H1 ∪H2.

Proof. See Appendix A.1.

In Fig. 3.5 we illustrate an example. We show two graphs H1 and H2 and col-

lections of disjoint sets F1 and F2 corresponding to their connected components.

Suppose we call CONNECT_ME(F1, F2). Changes are applied to F1 only when

u = 1 and u = 4 in the foreach. In the other cases (i.e., when u is equal to 0, 2 and

3) the condition in line 4 is not met.

When u = 1, findF2
returns 0. Therefore, MERGE_SETS combines the sets con-

taining 0 and 1 in F1. After this merge, F1 becomes identical to Fig. 3.4(c). Similarly,

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 33

5

9

8 7

10

6

1

4 3

2

3-clique
communities

4-clique
community

0 1 2 3 4 5

0

1

2

3

4

5

4 3 0 0 0 1

3 4 0 0 0 0

0 0 3 2 1 1

0 0 2 3 2 1

0 0 1 2 3 0

1 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 0 0

c2

c3

c4

c1

c0
2

3

4
1

0
2

3

4
1

0

H1 H2

2 310 4 210 43

2 3 410

210 43

2 4310

2 3 410

10 2 3 4

F1 F2

0 1 2 3 4 5

0

1

2

3

4

5

4

3 4

0 0 3

0 0 2 3

0 0 1 2 3

1 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

3 0 0 0 1

0 0 0 0

2 1 1

2 1

0

0

0

0

0

2

1

1

-

...
...

b

b+1

b+2

b+3

b+4

b+5

b+6

b+7

A W=8 bytes buffer,
starting at address b.

SLIDE(1) enables
filled elements in
rows 1-2 to be
accessed through
the buffer

A 6x6 matrix,
with indices in [0,5]

(a)

5

9

8 7

10

6

1

4 3

2

3-clique
communities

4-clique
community

0 1 2 3 4 5

0

1

2

3

4

5

4 3 0 0 0 1

3 4 0 0 0 0

0 0 3 2 1 1

0 0 2 3 2 1

0 0 1 2 3 0

1 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 0 0

c2

c3

c4

c1

c0
2

3

4
1

0
2

3

4
1

0

H1 H2

2 310 4 210 43

2 3 410

210 43

2 4310

2 3 410

10 2 3 4

F1 F2

0 1 2 3 4 5

0

1

2

3

4

5

4

3 4

0 0 3

0 0 2 3

0 0 1 2 3

1 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

3 0 0 0 1

0 0 0 0

2 1 1

2 1

0

0

0

0

0

2

1

1

-

...
...

b

b+1

b+2

b+3

b+4

b+5

b+6

b+7

A W=8 bytes buffer,
starting at address b.

SLIDE(1) enables
filled elements in
rows 1-2 to be
accessed through
the buffer

A 6x6 matrix,
with indices in [0,5]

(b)

Fig. 3.5. Two graphs H1 and H2, and collections of disjoint sets F1 and F2 cor-
responding to their connected components. F1 becomes identical to Fig. 3.4(d) after
CONNECT_ME(F1, F2) has been called.

when u = 4, findF2
returns 3 and MERGE_SETS combines the sets containing 3

and 4 in F1, which becomes identical to Fig. 3.4(d). This latter figure contains dis-

joint sets corresponding to the connected components of H1 ∪H2. Since we chosen

the graphs such that H1 ∪H2 = G3, we obtained the connected components of the

clique-clique graph in Fig. 3.3(b) — via the connected components of its subgraphs

only.

A general approach, which uses CONNECT_ME to merge the connected compo-

nents of an arbitrary number of subgraphs, is developed in the next section to detect

k-clique communities in parallel.

3.6 A Parallel Algorithm to Detect k-Clique Communities

In this section we present a k-clique community detection algorithm which serves as

a working proof-of-concept that: i) reduces the execution time by exploiting parallel

architectures; ii) efficiently distributes the load between the processors; iii) drastically

reduces memory requirements; and iv) enables the analytic determination of the

resources to be provisioned.

The proof-of-concept CPM On Steroids (COSpoc) is described in Algorithm 3.

COSpoc is designed for a p-processor shared-memory architecture. The algorithm

34 3.6. A PARALLEL ALGORITHM

Algorithm 3: COSpoc(c0, · · · , cl−1)
Input: c0, · · · , cl−1 // ci=list of nodes in the i-th maximal clique in G
Output: (kmax − 1) collections of disjoint sets Fk, k ∈ [2, kmax], corresponding

to the k-clique communities of G
1 begin
2 all processors q s.t. q ∈ [0, p− 1] do in parallel

// Initialize collections of disjoint sets
3 foreach k ∈ [2, kmax] do
4 Fq,k ←< Lk singletons {0}, · · · , {Lk − 1} >

// Extract k-clique communities
5 foreach i ∈ [0, l − 1] s.t. imodp = q do
6 for j ← i+ 1 to l − 1 do
7 ovi,j ← OV ERLAP (ci, cj)
8 foreach k ∈ [2, ovi,j + 1] do
9 MERGE_SETS(Fq,k, i, j)

// Join partial results
10 foreach k ∈ [2, kmax] do
11 foreach q ∈ [1, p− 1] do
12 CONNECT_ME(F0,k, Fq,k)

13 return F0,k, k ∈ [2, kmax]

takes as input c0, · · · , cl−1, where ci contains the list of nodes in the i-th maximal

clique in G and ci ≺ cj iff ci has a size greater than or equal to the size of cj .

Immediately after the beginning, in line 2, p processors start their execution in

parallel. At first, each processor q, q ∈ [0, p − 1], initializes (kmax − 1) collections

Fq,kmax
, · · · , Fq,3, Fq,2 on which it will be the only one to operate on. Collection Fq,k

has size Lk. Processor q uses Fq,k to extract the connected components of a sub-

graph Gq,k = (Vk, Eq,k) of the clique-clique graph Gk. This subgraph has the same

vertex set Vk of Gk and an edge set Eq,k ⊆ Ek which is determined by the condition

in line 5. Formally, Eq,k = {(i, j) ∈ Ek : q = imodp ∧ j > i}. Processor q ob-

tains the connected components of each subgraph Gq,k as follows. First, it executes

OV ERLAP (ci, cj)
2 to obtain the number ovi,j of nodes in common between maxi-

2 In practice, if ci and ci are represented as ordered vectors, this function can be efficiently
implemented by performing a binary search on the larger vector for each element of the
smaller one.

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 35

mal cliques ci, cj . Then, since ci and cj belong to the same k-clique community for

each k ∈ [2, ovi,j +1], it merges disjoint sets containing i and j in Fq,2, · · · , Fq,ovi,j+1.

When each processor p terminates execution, connected components of the

subgraphs Gq,k are merged together in the loop starting at line 10. For each k,

F0,k is updated with the connected components of Gq,k, q ∈ [1, p − 1], through

CONNECT_ME(F0,k, Fq,k). Therefore, after the i-th iteration of the loop, accord-

ing to Theorem 1, F0,k contains the connected components of a graph
⋃
q∈[0,i]Gq,k.

Now, by observing that the remainder of a division by p is always a number between

0 and p − 1, each possible pair of maximal cliques is processed since we have p

processors with indices q ∈ [0, p− 1]. Hence,
⋃
q∈[0,p−1]Gq,k = Gk and F0,k contains

the connected components of Gk after the completion of the loop starting at line 10.

These connected components are equivalent to the k-clique communities of G.

3.6.1 Worst-Case Algorithm Complexities

In this section we analytically derive both worst-case time and space complexities of

COSpoc. In order to ease analytic tractability we introduce the following assumptions:

i) operations on collections of disjoint sets are inO(1); and ii) perfect load balancing is

achieved. The rationale behind i) is that the function α, which is used to give an upper

on the cost of operations using the algorithm discussed in Sect. 3.5, actually grows

very slowly and does not assume values greater than 4 for any practical input [182].

The rationale behind ii) is three-fold. First, the fine-grained row assignment achieved

with the modulo operation. Second, the ordering in the input maximal cliques. Third,

the structural properties of real-world networks in which maximal cliques with similar

size generally have similar overlap values. In Sect. 3.8 we show that these apparently

strong assumptions are in fact well-justified and supported by the experiments.

COSpoc worst-case time complexity is given in the following theorem.

Theorem 2. If operations on collections of disjoint sets are in O(1), perfect load

balancing is achieved and overlap is calculated through binary searches, then

COSpoc(c0, · · · , cl−1) worst-case time complexity is in

36 3.7. A PARALLEL ALGORITHM (ON STEROIDS)

O

(
l2

p
kmaxlog2kmax

)
. (3.1)

Proof. See Appendix A.2.

Although COSpoc time complexity is inversely proportional to the number of pro-

cessors, the bound derived does not allow to analytically determine the speedup, i.e.

the ratio between the execution time of the sequential algorithm and the execution

time of the parallel algorithm. However, as we discuss in Sect. 3.8, we experimentally

measured a linear speedup of the algorithm, which is as good as we can possibly

hope for. Therefore, the assumption on the perfect load balancing is actually sound

and well-supported by experiments.

Worst-case space complexity is given in the following theorem.

Theorem 3. COSpoc(c0, · · · , cl−1) worst-case space complexity is in

O(p · l · kmax).

Proof. See Appendix A.2.

This complexity depends linearly on l, while in CPM this dependence is quadratic.

The substantial reduction in the space required enabled COS to extract k-clique

communities from real-world networks, such as those shown in Sect. 3.8. The ad-

vantages arising from the linear dependence of the space on l far outweigh the dis-

advantages arising from the linear dependence on p. In fact, l2 � p in any realistic

case. The lack of dependence of CPM on p is due to the fact that it is not a parallel

algorithm.

3.7 A Parallel Algorithm to Detect k-Clique Communities (on

Steroids)

In this section we introduce CPM On Steroids (COS). Compared to the proof-of-

concept COSpoc, in COS we drastically reduce the number of operations on collec-

tions of disjoint sets, by ensuring that MERGE_SETS is called at most one time for

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 37

each possible pair of maximal cliques. To achieve this improvement we: i) use a slid-

ing window over the clique-clique overlap matrix; and ii) exploit the fact that k-clique

communities are nested [67] — nested in the sense that each k-clique community is

contained in one and only one h-clique community for each h < k.

Prior to illustrate COS, we provide a throughout description of the sliding window,

which is exploited in the algorithm to ease cooperation between threads. This, in turn,

leads to a drastically reduced number of operations on collections of disjoint sets.

3.7.1 A Sliding Window To Enable Thread Cooperation

The sliding window enables multiple threads to process a matrix as if it were wholly

stored in main memory, while actually only a small chunk physically resides in mem-

ory. The idea of using a sliding window comes from the observation that when mul-

tiple flows of execution are available, the clique-clique overlap matrix can be used

to facilitate cooperation between threads. The sliding window uses a fixed W -bytes-

size buffer where it places the chunks. The size of the buffer is a user-configurable

parameter. The name "sliding window" reflects the idea of a (tiny) window which we

can slide over a huge matrix. By looking through this window we can only see a cer-

tain number of consecutive rows. If we want to see all the rows, we can (for example)

slide the window from the beginning of the matrix down to the end. The principle

is the same one could adopt for observing the whole sky through a telescope. One

could point the telescope at a patch of the sky, then could move it to another patch

and so on until she or he has explored the whole sky.

Actually, the window is slid over the upper triangular part of the matrix, which is

enough to contain non redundant information on the overlap. Hence, The number of

rows that can fit in the buffer is not constant. Let w be the number of bytes required

by each element of the matrix. The maximum number of elements that can fit in the

buffer, constant and known a priori, is η = bW/wc. Conversely, the maximum number

of consecutive rows that can fit in it, let them have indices in the range [s, e], depends

both on η and s (or, equivalently, e). Assuming s is given, and indices range from 0 to

l − 1 globally, we can determine e by solving

38 3.7. A PARALLEL ALGORITHM (ON STEROIDS)

x∑
j=s

(l − (j + 1)) = η. (3.2)

If we distribute the sum and use the formula for the sum of the first integer num-

bers, we can rewrite (3.2) as −x2/2 + x(l − 3/2) + (s − 1)(s/2 − l + 1) = η. This

equation has two solutions for x: x1 = l − 3/2− 1/2
√
∆ and x2 = l − 3/2 + 1/2

√
∆,

where ∆ = (2s − 2l + 1)2 − 8η. Solutions are real if a) l ≥ 2 (i.e., the number of

maximal cliques is greater than two); b) η ≥ l−1 (i.e., the buffer is sized to contain at

least the largest row) and c) 0 ≤ s ≤ l − 1 (i.e., the index s must be one valid matrix

index). The index e can be determined as follows. If x1 < 0, e = l − 1 because all

the rows up to the last can fit in the buffer. If x1 = l − 2 and x2 = l − 1, e = l − 1.

Otherwise, e = bx1c.

Each element (i, j) such that i ∈ [s, e] and j ∈ [i+1, l−1] can be located in the buffer

at offset

w

(
h=i−1∑
h=s

[l − (h+ 1)] + j − i− 1

)
. (3.3)

According to the previous results, we can provide three simple functions. SLIDE(s)

which, given s as input, computes and returns e.READ(i, j) andWRITE(i, j, value),

which provide read/write access to the elements with indices (i, j) such that i ∈ [s, e]

and j ∈ [i + 1, l − 1]. In order to provide access to the elements, these functions: i)

use (3.3) to compute the offset of element (i, j); and ii) add the offset to the base

address of the buffer in memory.

Figure 3.6 shows an example of the sliding window over the clique-clique overlap

matrix of Fig. 3.2(b). The buffer has sizeW = 8 bytes and each element requires w =

1 byte: at most µ = 8 elements can fit in it. After e← SLIDE(1) has been called, ele-

ments (i, j), i ∈ [1, 2] and j > i are mapped into the buffer, since the function returned

e = 2. The value of each element (i, j) has been written at the right offset through a

WRITE(i, j, value) and can be retrieved with READ(i, j). WRITE(i, j, value) and

READ(i, j), to properly locate the element in memory, compute the offset of (i, j)

according to (3.3) and add it to the base address b. For example, the offset for ele-

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 39

5

9

8 7

10

6

1

4 3

2

3-clique
communities

4-clique
community

0 1 2 3 4 5

0

1

2

3

4

5

4 3 0 0 0 1

3 4 0 0 0 0

0 0 3 2 1 1

0 0 2 3 2 1

0 0 1 2 3 0

1 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 0 0

c2

c3

c4

c1

c0
2

3

4
1

0
2

3

4
1

0

H1 H2

2 310 4 210 43

2 3 410

210 43

2 4310

2 3 410

10 2 3 4

F1 F2

0 1 2 3 4 5

0

1

2

3

4

5

4

3 4

0 0 3

0 0 2 3

0 0 1 2 3

1 0 1 1 0 2

0 1 2 3 4 5

0

1

2

3

4

5

3 0 0 0 1

0 0 0 0

2 1 1

2 1

0

0

0

0

0

2

1

1

-

...
...

b

b+1

b+2

b+3

b+4

b+5

b+6

b+7

A W=8 bytes buffer,
starting at address b.

SLIDE(1) enables
filled elements in
rows 1-2 to be
accessed through
the buffer

A 6x6 matrix,
with indices in [0,5]

Fig. 3.6. The sliding window over the matrix of Fig. 3.2(b). The buffer has size W = 8 bytes
and each element requires w = 1 byte.

ment (2, 4) is 5, since
∑h=i−1=1
h=s=1 [l− (h+1)]+ j− i− 1 = [6− (1+1)]+ 4− 2− 1 = 5.

The element can be located in memory at address b+ 5.

With the sliding window, the O(l2) worst-case space complexity required for the

clique-clique overlap matrix becomes O(W), with W constant and user-configurable.

Worst-case time complexity can definitely be neglected since the most expensive

operation consists in solving a second order equation.

3.7.2 Algorithm Description

COS, which is designed for a p-processors shared-memory architecture, is described

in Algorithm 4. It uses a sliding window (see previous section) to efficiently process

the clique-clique overlap matrix in chunks of a configurable size. Moreover, COS

leverages on k-clique community nesting [67] to drastically reduce operations on

collections of disjoint sets.

COS takes as input c0, · · · , cl−1, where ci contains the list of nodes in the i-th

maximal clique in G and ci ≺ cj iff ci has a size greater than or equal to the size of

cj . At first, (kmax−1) collections Fglobal,kmax , · · · , Fglobal,3, Fglobal,2 are initialized. Col-

lection Fglobal,k has Lk elements and initially each element is in a disjoint singleton

set. Processors will place their partial results in these global collections.

40 3.7. A PARALLEL ALGORITHM (ON STEROIDS)

Algorithm 4: COS(c0, · · · , cl−1)
Input: c0, · · · , cl−1 // ci=list of nodes in the i-th maximal clique in G
Output: (kmax − 1) collections of disjoint sets Fk, k ∈ [2, kmax], corresponding

to the k-clique communities of G
1 begin

// Initialize set union data structures
2 foreach k ∈ [2, kmax] do
3 Fglobal,k ←< Lk singleton sets {0}, · · · , {Lk − 1} >

// Extract k-clique communities
4 s, e← 0
5 while e < (l − 2) do
6 e← SLIDE(s)
7 // Overlap Computation
8 all processors q, q ∈ [0, p− 1] do in parallel
9 foreach i ∈ [s, e] s.t. imodp = q do

10 for j ← i+ 1 to l − 1 do
11 ovi,j ← OV ERLAP (ci, cj)
12 WRITE(i, j, ovi,j)

13 // Overlap Processing
14 all processors q, q ∈ [0, p− 1] do in parallel
15 k ← kmax
16 Fq ←< l singletons {0}, · · · , {l − 1} >
17 while k > 1 do
18 foreach i ∈ [s, e] s.t. imodp = q do
19 for j ← i+ 1 to Lk − 1 do
20 ovi,j ← READ(i, j)
21 if ovi,j = (k − 1) then
22 MERGE_SETS(Fq, i, j)
23 WRITE(i, j, 0)

24 CONNECT_ME(Fglobal,k, Fq)
25 k ← k − 1

26 // Update s
27 s← e+ 1

28 return Fglobal,k, k ∈ [2, kmax]

After the initialization of global collections, the sliding window comes into play.

The upper triangular part of the clique-clique overlap matrix is processed in chunks,

starting from the first row. Rows in each chunk are mapped into the buffer in line 6

through SLIDE(s). These chunks map consecutive rows since the index s is always

updated with (e + 1) in line 27. Furthermore, the whole upper triangular part is pro-

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 41

cessed because the while cycles until e has reached the last index (l − 2). Hence,

the overlap between each possible pair of maximal cliques is processed.

For each chunk, parallel operations are divided into two blocks. Two barri-

ers are introduced at the end of each block (just before lines 13 and 26). For

CONNECT_ME — and only for it in the whole algorithm — mutually exclusive

execution must be guaranteed.

In the first parallel block, starting at line 8, the OV ERLAP (ci, cj) is computed

for each pair of maximal cliques ci, cj , i ∈ [s, e] and j ∈ [i + 1, l − 1] — for each i

always exists one and only one processor q ∈ [0, p − 1] such that q = imodp. When

the overlap is computed, it is written to the buffer. Write operations are performed

simultaneously since no two processors ever write to the same location.

In the second parallel block, starting at line 14, the overlap is analysed in order

to extract the connected components of the clique-clique graphs Gk, according to

a strictly decreasing order of k, i.e. from kmax down to 2. More precisely, for each

chunk, processor q uses the collection Fq to update the connected components of a

subgraph of Gkmax . Then, it exploits the information already encoded in Fq to update

the connected components of a subgraph Gkmax−1, and so, on until G2. This informa-

tion can be exploited in accordance to the theorem in [67]. The theorem guarantees

that each k-clique community is contained in one and only one h-clique community,

h ∈ [2, k], implying Gk ⊆ Gk−1 for each k.

Let us now discuss in more detail the operations each processor q performs in

the second parallel block. Given a k, q reads the overlap between a subset of pairs

of maximal h-cliques, h ≥ k — these are the only maximal cliques that belong to

k-clique communities (see Def. 2). This subset is determined by the condition in

line 18. If ovi,j = (k − 1), maximal cliques ci and cj belong to the same k-clique

community and, hence, sets in Fq containing i and j are merged and the overlap

value is zeroed. After the overlap has been processed for each possible pair of

maximal h-cliques, h ≥ k, Fq contains disjoint sets corresponding to the connected

components of a subgraph of the clique-clique graph Gk. This subgraph is on the

same nodes of Gk but has edges (i, j) ∈ Ek s.t. i ∈ [s, e], j > i, and q = imodp.

Since the union of these subgraphs over all the chunks and over all the proces-

sors produces Gk, their connected components have to be merged together in order

42 3.8. EXPERIMENTAL RESULTS

to obtain the connected components of Gk — merging is accomplished by calling

CONNECT_ME(Fglobal,k, Fq). Once the merging has been done the while contin-

ues with a k decreased by one.

The zeroing of the overlap value, which is performed simultaneously since no

two processors ever write to the same location, significantly speeds up operations.

Indeed, it avoids doing more than one merging for each pair of maximal cliques. We

can still obtain the connected components of any clique-clique graph, since k values

are processed in decreasing order. The relation Gk ⊆ Gk−1 enables us to re-use

the same Fq to progressively include information on the connected components of

clique-clique graphs at gradually smaller k values.

After all the chunks have been processed, Fglobal,k contains the connected com-

ponents of Gk, k ∈ [2, kmax] which are equivalent to the k-clique communities of G.

COS worst-case complexities are given in Appendix A.2.

3.8 Experimental Results

3.8.1 Experimental Setup and Input Data

We implemented COSpoc and COS in C, in a freely and publicly available software

[66]. Maximal Cliques were listed using the open-source implementation of the (se-

rial) Bron-Kerbosh (BK) algorithm available in the igraph library [42]. For parallel

programming we used the standard POSIX Threads3. We used a CPM implemen-

tation available in CFinder4 [148] and a python SCP implementation retrieved from

http://www.lce.hut.fi/~mtkivela/kclique.html. The machine on which we ran

the experiments has four Intel Xeon processors E7-48505 and 128 GB RAM. It runs

a GNU/Linux Operating System (OS) with a kernel Linux 3.0.6.

Graphs used in the experiments, together with the type of complex system they

model, their references and their number of nodes |V | and edges |E| are reported

in Tab. 3.1. LINX graph was obtained according to [71] whereas the others were re-

trieved from [14] and [113]. All the graphs were considered undirected, unweighted,
3 POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995)
4 Experiments were carried out with version 2.0.5, 64 bit
5 24M Cache, 2.00 GHz, 10 cores, 20 threads, HT capable

http://www.lce.hut.fi/~mtkivela/kclique.html

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 43

Graph Type Ref. |V | |E|

LINX Autonomous Systems [71] 345 14,188

NDwww Web [14] 325,729 1,090,108

SFwww Web [93] 281,903 1,992,636

CAquery Web [97] 9,664 15,969

Yeast Protein Interactions [31] 2,361 6,646

NetSci Collaboration [135] 1,589 2,742

Erdos Collaboration [14] 6,927 11,850

Geom Collaboration [91] 7,343 7,343

Amazon Product co-purchase [114] 403,394 2,443,408

AstroPh Collaboration [115] 18,772 198,050

CondMat Collaboration [115] 23,133 93,439

HepTh Citation [115] 27,770 352,285

EmlEnron Communication [116] 36,692 183,831

Table 3.1. Graphs used in the experiments

without isolated nodes and without self- and multiple-edges. Table 3.2 reports the

total number of maximal cliques l in each graph, their maximum size kmax, their av-

erage size µ = l−1
∑
k k · lk, their variance σ2 = l−1

∑
k lk(k − µ)2 and the number

l2 of maximal cliques with size 2. In addition a fine estimation s̃ of the size of the

clique-clique overlap matrix CPM has to build is reported. This estimation was com-

puted as the square of the number of maximal cliques with size strictly greater than

2, assuming that a byte is used for each element. With this estimation it is possible

to know, a priori, which graphs can be processed by CPM on our 128 GB memory

machine.

3.8.2 Experiments

Comparison of COS and CPM

CPM runtime memory footprint is shown and compared with that of COS in Fig. 3.7.

NDwww graph was used as input since it is the graph requiring the greatest amount

44 3.8. EXPERIMENTAL RESULTS

Graph l kmax µ σ2 l2 s̃ [GB]

LINX 384,494 34 23.01 11.29 1 113.11

NDwww 495,947 155 3.15 1.49 294,706 37.72

SFwww 1,055,936 61 7.00 5.65 108,831 835.4

CAquery 17,548 10 1.92 0.18 15,660 > 0.01

Yeast 5,012 9 2.45 0.39 3,644 > 0.01

NetSci 741 20 2.88 0.94 349 > 0.01

Erdos 9,210 8 2.47 0.32 6,503 0.01

Geom 5,817 22 2.68 0.85 3,167 0.01

Amazon 1,023,572 11 3.82 0.75 264,874 536.09

AstroPh 36,428 57 6.87 3.88 2,236 1.09

CondMat 18,502 26 3.95 1.01 3,888 0.2

HepTh 464,873 23 7.71 1.99 15,466 188.1

EmlEnron 226,859 20 8.08 1.36 14,070 42.17

Table 3.2. Features of the graphs used in the experiments

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

10
1

10
2

10
3

10
4

M
e
m
o
r
y

F
o
o
t
p
r
i
n
t

[
G
B
]

Elapsed Time [s]

CPM
COS 32GB 80 th.
COS 2GB 2 th.

Fig. 3.7. Runtime memory footprint of CPM and COS on NDwww.

of memory on which CPM executed without errors on our hardware. We decided to

plot runtime memory footprint for two configurations of COS: 80 threads with a 32GB

sliding window buffer; and 2 threads with a 2GB sliding window buffer. The aim of

the former configuration is to demonstrate the suitability of COS in high performance

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 45

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 8 16 32 64

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Sliding Window Buffer Size [GB]

LINX
Amazon
HepTh

StanfordWeb

Fig. 3.8. Execution time of COS versus sliding window size.

systems, whereas the aim of the latter is to give evidence of the effectiveness of COS

even on standard machines. For "COS 2GB 2 th." in the figure, maximum memory

footprint is, at most, approximately equal to the size of the sliding window buffer. This

suggest that the upper bound on the worst-case space complexity derived may be

considered W in practice. For "COS 32GB 80 th." memory footprint is approximately

20GB — i.e., about one half of the estimated clique-clique overlap matrix size for

NDwww. This arises because the sliding window processes only the upper triangular

part of that matrix. From this observation it follows also that the 32GB buffer, which

is not fully used, enables the sliding window to process the whole upper triangular

part in only one chunk. Finally, we note also that COS is approximately 20 (6) times

faster than CPM when configured with 80 (2) threads.

The Impact of the Sliding Window Buffer Size on the Execution Time

We performed this experiment with the aim of determining how changes in the sliding

window buffer size W impact on the execution time. We executed COS several times,

starting with W = 1 GB, and doubling this size until W = 64 GB. We ran COS with

80 threads since this quantity corresponds to the maximum number of processors

visible to our OS. This number does not equal the maximum physical degree of par-

46 3.8. EXPERIMENTAL RESULTS

10
2

10
3

10
4

10
5

1 2 4 8 16 32 64 80

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

of Threads

COSpoc
COS

Fig. 3.9. Execution time comparison of COSpoc and COS on NDwww.

allelism, which is lower, but can still optimize OS behaviour on our hyper-threading

capable hardware. As inputs, we chosen graphs for which COS requires to place

more than one chunk in the buffer — i.e. graphs whose estimated clique-clique over-

lap matrix size is always greater than twice theW . As shown in Fig. 3.8, the execution

time decreases as the buffer size increases. This can be explained by the lower the

number of mutually exclusive operations that need to be made on global collections

of disjoint sets (line 24 of COS).

Nevertheless, while this reduction is significant in the range 1-4 GB, it is much

less pronounced for sizes greater than 8 GB. In the range 16-64 GB the execution

time is minimized, and almost constant values suggest that COS has low sensitivity

to buffer sizes in the latter range. The size W = 32 GB is chosen as the default

sliding window buffer size for the subsequent experiments.

Comparison of COS and COSpoc

In this experiment we compare COSpoc and COS execution time, versus number of

threads, on the graph NDwww. We demonstrate that the techniques introduced in

COS dramatically improve the overall performance. Results are shown in Fig. 3.9.

Execution time reductions achieved with COS are extremely important, ranging from

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 47

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

1 2 4 8 16 32 64 80

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

of Threads

LINX
NDwww

AstroPh
Ideal Case

Fig. 3.10. Execution time of COS versus number of threads.

one to two orders of magnitude. We can also observe that COSpoc execution time

decreases exponentially in the range from 1 to 32 threads. Therefore, in this range

the algorithm achieves a linear speedup — which is the best one could hope for.

This means that doubling the number of threads actually leads to an halving of the

execution time. In other words, the algorithm has a linear speedup. Since the maxi-

mum physical degree of parallelism of our machine is 40, it is worth noting that it is

impossible to experiment linear speedups for 64 and 80 threads.

COS execution time decreases less than exponentially with the increase of the

number of threads. This is because plotted values include the time to extract maximal

cliques. This time, although negligible if compared with COSpoc total execution time,

is comparable with that of COS and therefore it does not allow to achieve a linear

speedup. In the next section we exclude maximal cliques listing time and show that

also COS achieves a linear speedup.

The Impact of Number of Threads on the Execution Time (speedup)

In Fig. 3.10 we show the execution time of COS versus an exponentially increasing

number of threads. Plotted values do not include the time required to list maximal

cliques with the BK algorithm. LINX, NDWWW and AstroPh were chosen as inputs

48 3.8. EXPERIMENTAL RESULTS

10
3

10
4

10
5

1 2 4 8 16 32 64 80

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

of Threads

LINX

10
3

10
4

10
5

1 2 4 8 16 32 64 80

of Threads

SFwww

10
3

10
4

10
5

1 2 4 8 16 32 64 80

of Threads

Amazon

10
0

10
1

10
2

1 2 4 8 16 32 64 80

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

of Threads

AstroPh

10
2

10
3

10
4

10
5

1 2 4 8 16 32 64 80

of Threads

HepTh

10
2

10
3

10
4

1 2 4 8 16 32 64 80

of Threads

EmlEnron

Fig. 3.11. Execution time of COS versus number of threads.

since their execution times always differ for at least one order of magnitude, regard-

less of the number of threads. For each input we also draw a dashed line, which

represent the ideal case where doubling the number of threads halves the execution

time. It is worth noting how COS reaches — or is very close to — the ideal case, at

least up to 32 threads. The distance from the ideal case that is experienced for 64

and 80 threads is due to the fact that our hardware physical degree of parallelism

is 40. This is evidence that COS speedup on our machine is linear with the number

of physical cores available. Additional evidence is provided with the following experi-

ments.

In Fig. 3.11 we show the time COS took to execute on graphs for which it was

not possible to run CPM on. In particular, it was not possible to execute CPM on

SFwww, Amazon and HepTh due to their clique-clique overlap matrix size, exceeding

the amount of memory available on our hardware. Conversely, despite matrix sizes

of LINX, AstroPh and EmlEnron would allow CPM to run, we (on LINX and AstroPh

after two days) or the OS (on EmlEnron after 12 hours) stopped the execution. Values

plotted include the time taken by serially extracting maximal cliques. Even with the

inclusion of this time, COS continues to achieve a very good speedup. Hence — as

also stated in Sect. 3.2 — maximal cliques listing time is negligible if compared with

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 49

10
0

10
1

10
2

1 2 4 8 16 32 64 80

E
x
e
c
.

T
i
m
e

R
a
t
i
o

of Threads

NDwww

10
0

10
1

10
2

1 2 4 8 16 32 64 80

of Threads

CAquery

10
0

10
1

10
2

10
3

1 2 4 8 16 32 64 80

of Threads

Yeast

10
0

10
1

10
2

10
3

10
4

10
5

1 2 4 8 16 32 64 80

E
x
e
c
.

T
i
m
e

R
a
t
i
o

of Threads

NetScience

10
0

10
1

10
2

10
3

1 2 4 8 16 32 64 80

of Threads

Erdos

10
0

10
1

10
2

10
3

10
4

1 2 4 8 16 32 64 80

of Threads

Geom

10
0

10
1

10
2

10
3

10
4

10
5

1 2 4 8 16 32 64 80

E
x
e
c
.

T
i
m
e

R
a
t
i
o

of Threads

CondMat

Execution Time
Ratios

CPM/COS

SCP/COS

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

CAquery

CondMat

Erdos

Geom

NetSci

Yeast

NDwww

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

CPM

SCP

Fig. 3.12. CPM/COS (SCP/COS) execution time ratio and execution times of CPM and SCP.

the total time. Again, the exponential decrease of the execution time up to 32 threads

provides evidence on the linear speedup of COS — that is, the best that one could

hope for.

Comparsion of COS with The State-of-The-Art

In Fig. 3.12 we compare COS, CPM and SCP execution times. On our hardware,

we were able to execute successfully CPM on NDwww, CAquery, Yeasy, NetSci,

Erdos, Geom and CondMat. We were able to run also SCP on all these graphs

except NDwww. Since SCP is designed to extract k-clique communities for a given

k, we obtained its execution time by summing the times it takes to extract k-clique

50 3.8. EXPERIMENTAL RESULTS

communities for each possible value of k. Execution times of both CPM and SCP are

given in the bottom right corner of Fig. 3.12. In the other plots of the same figure,

we show the values of two execution time ratios, namely: CPM/COS (in red); and

SCP/COS (in blue). For each number of threads in the x-axis, we computed the

ratio CPM/COS (SCP/COS) by dividing the execution time of CPM (SCP) with that

of COS, executed with the corresponding number of threads.

These ratios, which are always greater than 1, reveal that COS is always faster

than both CPM and SCP. In particular, it is always more than 10 times faster than SCP

on any input, even when run with 1 thread. By increasing the number of threads, we

see that it becomes 100 to more than 1,000 times faster. Best performance is ob-

tained for CondMat where COS terminate its 80-threaded execution in one 10,000th

the time it takes SCP. Very good execution time reductions are experienced also with

reference to CPM. In this case, COS is few times faster that CPM for single-threaded

executions, but becomes 10 to 20 times faster when the number of threads is in-

creased. Although these reductions are important in both cases, absolute execution

times are too small (only NDwww takes more than 10 seconds) to enable the identifi-

cation of a clear link between number of threads and COS execution time variations.

Finally, with this experiment we can say that SCP, although designed to overcome its

drawbacks, it is actually slower than CPM and differences in their execution time al-

ways exceed the order of magnitude. In the next experiment we compare COS with

other state-of-the art algorithms, detecting communities different from the k-clique

communities. For the comparison we carefully selected 6 of the best-performing al-

gorithms available in the literature [106]. We observed that COS performance is as

good as the fastest algorithms on some graphs, even when it is not executed in

parallel. Performance degradations are observed on graphs with an extremely high

number of maximal cliques with large sizes.

Comparison of COS with Other Community Detection Algorithms

Many community detection algorithms have been proposed so far in the literature.

While they have already been subjected to strict tests with the aim of evaluating their

performance [106], their efficiency has not yet been compared. Here we carry out a

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 51

comparative analysis of the efficiency of some state-of-the-art community detection

algorithms and compare them with COS. All algorithms considered are thoroughly

discussed in Sect. 2.3, and their main features are summarized in Tab. 2.1. Here,

for the sake of readability, we briefly recall them. The first two algorithms chosen,

infomod and infomap, were proposed by Rosvall and Bergstorm [164] [166]. The third

algorithm blondel was proposed by Blondel et al. [20]. We also selected kdense, that

is solely based on the topological properties of a graph (Saito et al. [169]). Finally,

we chosen oslom and gce, that are able to detect overlapping community structure

(Lancichinetti et al. [110] and Lee et al. [112]).

Since some of the algorithms considered are unacceptably slow, an upper bound

in the execution time is necessary to complete the experiments in a reasonable

amount of time. However, we avoided choosing fixed, arbitrary bounds. Rather, we

carefully determined the maximum execution time to assign to each algorithm for

each input graph. For the calculation of these timeouts we exploited the already mea-

sured execution times of COS. More precisely, we selected for each input the time

COS took to complete is execution with 8 threads. In fact, this is the time COS should

take to complete its execution on today’s multi-core personal computers. We set

the following timeouts: LINX (8,417.37 s), NDwww (320.16 s), SFwww (9,880.97 s),

Amazon (7,648.42 s), AstroPh (11.97 s), HepTh (2,072.37 s) and EmlEnron (526.81

s). We did not set them for CAquery, CondMat, Erdos, Geom, NetSci and Yeast since

all the algorithms completed quite fast on these small graphs.

Algorithms infomod , infomap, blondel , oslom and gce are non-deterministic. This

means that both their outcome and their execution time varies unpredictably due

to their intrinsic stochastic elements. For this reason we decided to plot average,

maximum and minimum values across 10 independent runs. On the contrary, we

plotted the exact values obtained from a single run of both COS and kdense, which

are deterministic.

In Fig. 3.13 we show algorithms average, maximum and minimum execution time.

Input graphs are those for which we did not set upper bounds on algorithms execution

time. To ease the comparison we plotted COS execution time as an horizontal rule.

This time is relative to the 1-threaded execution of COS, i.e. it is the worst-case

execution time, achieved only when COS is not executed in parallel. We decided

52 3.8. EXPERIMENTAL RESULTS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

b
l
o
n
d
e
l

i
n
f
o
m
o
d

i
n
f
o
m
a
p

o
s
l
o
m

g
c
e

k
d
e
n
s
e

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Method

(a) CAquery

 0

 5

 10

 15

 20

 25

 30

b
l
o
n
d
e
l

i
n
f
o
m
o
d

i
n
f
o
m
a
p

o
s
l
o
m

g
c
e

k
d
e
n
s
e

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Method

(b) Yeast

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

b
l
o
n
d
e
l

i
n
f
o
m
o
d

i
n
f
o
m
a
p

o
s
l
o
m

g
c
e

k
d
e
n
s
e

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Method

(c) NetScience

 0

 20

 40

 60

 80

 100

 120

 140

b
l
o
n
d
e
l

i
n
f
o
m
o
d

i
n
f
o
m
a
p

o
s
l
o
m

g
c
e

k
d
e
n
s
e

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Method

(d) Erdos

 0

 2

 4

 6

 8

 10

 12

 14

b
l
o
n
d
e
l

i
n
f
o
m
o
d

i
n
f
o
m
a
p

o
s
l
o
m

g
c
e

k
d
e
n
s
e

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Method

(e) Geom

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

b
l
o
n
d
e
l

i
n
f
o
m
o
d

i
n
f
o
m
a
p

o
s
l
o
m

g
c
e

k
d
e
n
s
e

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Method

(f) CondMat

Fig. 3.13. Algorithms average, maximum and minimum execution time. Input graphs are those
for which we did not set an execution timeout. COS execution time is plotted as an horizontal
rule.

to plot these worst-case values to enable meaningful comparisons with the other

algorithms, which are not parallel. By studying Fig. 3.13, we see that infomod and

oslom have the worst performance. They are tens to hundred times slower that all the

other algorithms. In addition, a great variability in their execution times was observed

among different runs. Also kdense does not perform well and its performance is

similar to that of oslom and infomod on NetScience, Geom and CondMat. All the

other algorithms run in negligible time. They all terminate in less that 1 second on

any input. By observing the horizontal rule indicating COS execution time, we see

that it is definitely one of the best performing algorithms. In fact, COS performance

is as good as the fastest state-of-the-art community detection algorithms on these

graphs, even if it is not executed in parallel.

In Fig. 3.14 we show algorithms performance on inputs for which we set execution

time upper bounds. Algorithms average, maximum and minimum values are plotted.

COS best- and worst-case execution times experimented are plotted as horizontal

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 53

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

b
l
o
n
d
e
l

i
n
f
o
m
o
d

i
n
f
o
m
a
p

o
s
l
o
m

g
c
e

k
d
e
n
s
e

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Method

(a) LINX

10
-1

10
0

10
1

10
2

10
3

10
4

b
l
o
n
d
e
l

i
n
f
o
m
a
p

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Method

(b) NDwww

10
0

10
1

10
2

10
3

10
4

10
5

b
l
o
n
d
e
l

i
n
f
o
m
a
p

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Method

(c) SFwww

10
0

10
1

10
2

10
3

10
4

10
5

b
l
o
n
d
e
l

i
n
f
o
m
a
p

o
s
l
o
m

g
c
e

k
d
e
n
s
e

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Method

(d) Amazon

10
-1

10
0

10
1

10
2

b
l
o
n
d
e
l

i
n
f
o
m
a
p

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Method

(e) AstroPh

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

b
l
o
n
d
e
l

i
n
f
o
m
a
p

o
s
l
o
m

g
c
e

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Method

(f) HepTh

10
-1

10
0

10
1

10
2

10
3

10
4

b
l
o
n
d
e
l

i
n
f
o
m
a
p

g
c
e

E
x
e
c
u
t
i
o
n

T
i
m
e

[
s
]

Method

(g) EmlEnron

Fig. 3.14. Algorithms average, maximum and minimum execution time. Input graphs are those
for which we set an execution timeout. For each graph, only algorithms faster than COS are
shown. COS maximum and minimum execution times are plotted as horizontal rules.

rules. These values were obtained by running COS with 80 threads and 1 thread

respectively. We want to emphasize values are shown only for algorithms faster than

COS executed with 8 threads. This does not mean that they are always faster. In fact,

many of them are slower than COS when its degree of parallelism is increased —

this can be seen from the absence of slow algorithms from the x-axes in the figure.

54 3.8. EXPERIMENTAL RESULTS

Graph infomod infomap blondel kdense oslom gce

LINX † + + + + +

NDwww † + + - - -

SFwww † + + - - -

Amazon † + + + + +

AstroPh - + + - - -

HepTh - + + - + +

EmlEnron - + + - - +

†Execution terminated anomalously with exception std::bad_alloc

Table 3.3. Algorithms faster “+” (slower “-”) than COS executed with 8 threads

blondel and infomap algorithms perform best with these additional graphs too

(see Fig. 3.14). They are the only two algorithms able to terminate faster than COS

(run with 8 threads on each input). In particular, blondel turns out to be always the

fastest algorithm, achieving execution times which are orders of magnitude less than

the others. It does not take more than 20 seconds to terminate on every input and

it is the only algorithm which is always faster than COS. Conversely, gce does not

exhibit very good performance as in Fig. 3.13 and it is always at least one order of

magnitude slower than blondel and infomap on all the inputs except for Amazon. The

algorithms which perform worst are still infomod , oslom and kdense in these cases

too. For example, infomod was slower than COS for AstroPh, HepTh and EmlEnron.

It was not even able to execute successfully on LINX, NDwww, SFwww and Amazon.

As a summary, we report in Tab. 3.3, for each input, which algorithms executed faster

(slower) than COS run with 8 threads.

Here we discuss the reasons why COS is significantly slower than every other

algorithm on LINX. LINX is a small graph in terms of number of nodes and edges

but has a huge number of maximal cliques. By observing Tab. 3.2 we see that this

number is comparable with that of the largest graphs in terms of nodes/edges. More-

over, LINX has the highest average maximal clique size, which is more that twice

the average size on each other graph. Differences in the execution time arise from

the fact that COS is the only algorithm which has maximal cliques as the basis of its

community discovery mechanism. Maximal cliques are so relevant in COS that we

CHAPTER 3. PARALLEL NETWORK COMMUNITY DETECTION 55

expressed both its worst-case time and space complexities in terms of them. How-

ever, disadvantages arising from an higher execution time are well balanced by the

quality of the communities extracted. Indeed, most of the other algorithms are not

able to discover significant community structure on LINX since they end up in group-

ing all the nodes in a single (or, at most, in a few) community. On the contrary, k-clique

communities extracted by COS better capture the extremely-overlapping and nested

community structure of this graph.

We can conclude the discussion by observing that COS is not always able to

achieve the lowest execution times on these inputs. However, it is important to em-

phasize that it is always able to execute successfully. While conducting the experi-

ments, we also monitored runtime memory footprint of the algorithms. We observed

that they do not require more than a few GB, except for the kdense, which uses

approximately 25 GB while running on Amazon. However, its demand reduces sig-

nificantly on the other inputs. In fact, if we exclude Amazon, it requires at most 1.8

GB for SFwww. Another memory-demanding algorithm is infomod , which requires

approximately 3 GB for HepTh and 5 GB for EmlEnron. The other algorithms does

not use an amount of memory exceeding significantly 1 GB for any graph.

3.9 Discussion and Conclusion

In this chapter we addressed the problem of extracting k-clique communities in par-

allel from real-world networks, such as the Internet. We theoretically analysed the

existing Clique Percolation Method (CPM), highlighting its scalability issues. The

identification of these scalability issues enabled us to design and develop CPM

On Steroids (COS) algorithm. COS efficiently extracts k-clique communities, with

low memory requirements and has an unbounded, user-configurable degree of par-

allelism. Analytic tight upper bounds on COS execution time and space require-

ments, providing strong evidence about its efficiency, are presented as well. A key

role in COS is played by the innovative CONNECted ComponenTs MErging (CON-

NECT_ME) algorithm. With this technique we can obtain the connected components

of a network, even if it has previously been split into and arbitrary number of sub-

networks that could be processed in parallel. Through extensive experiments run on

56 3.9. DISCUSSION AND CONCLUSION

real-world network data, we showed that COS has a linear speedup and constantly

outperform all the other state-of-the-art k-clique community detection algorithms in

terms of both space requirements and execution time. In our opinion, it should be

the algorithm of choice for k-clique communities extraction aiming at very high per-

formance and low resource requirements. As a future work we plan to extend the de-

sign of COS for a message-passing architecture and to investigate its performance

on mega-scale networks such as Wikipedia, Facebook and Twitter.

4

Network-Based Methodologies to Study the Internet

4.1 Networks, Internet Companies, and Stock Markets: When

Technology meets Business

4.1.1 Introduction

The nature of Autonomous Systems (AS) in the Internet is twofold. On the one hand,

they are collections of switches and routers intra- and inter-connected via physical

links and logical sessions. On the other hand, they are well-established companies

that follow complex business strategies to be competitive within the same industry. Al-

though these two natures could seem incommensurable at a first sight, they are actu-

ally closely related. Indeed, business strategies entail developing and implementing

enterprise policies and plans. The implementation, in the Internet ecosystem, usu-

ally consists in operating routers and physical links or in establishing Border Gateway

Protocol (BGP) sessions with providers or peers. BGP, the de facto standard for In-

ternet traffic exchange, allows companies to finely tune their in- and out-bound traffic

according to contracts signed with other companies. Therefore, we argue the exis-

tence of a strong mutual coupling between these natures. Strategic management de-

termines changes in the physical links and logical sessions of switches and routers.

In turn, the latter connectivity changes affect present and future business strategies.

Here, we aim at taking a step forward by linking the two natures.

We investigate synchronous cross correlations between stock price variations

and AS-level connectivity features such as the degree or the clustering coefficient.

58 4.1. NETWORKS, INTERNET COMPANIES, AND STOCK MARKETS

The AS-level network is an abstract representation of the economically-driven inter-

connections between ASes, which need to cooperate in order to stay on the market.

We focus on the AS-level network since we believe it best captures the dynamics un-

derlying inter-AS economic relationships. As thoroughly discussed in the introductory

chapter of this thesis, at this level all the routers and links operated by a single AS

are collapsed into one single node and only inter-AS links are retained. These links,

corresponding to BGP sessions, are always established according to some kind of

economical agreement [139] [138].

Synchronous cross correlations are quantified by means of the Pearson corre-

lation coefficient. A metric space is defined for the investigated stocks and AS-level

features, ensuring that the stronger the correlation, the closer the elements in the

space. A hierarchical organization in this space is detected through a clustering pro-

cedure able to extract an ultrametric space from it. We emphasize the hierarchical

organization by means of a Minimum Spanning Tree (MST), which provides a mean-

ingful topological arrangement of stocks and AS-level features. We show that this

methodology allows to isolate groups which make sense from an economic point of

view and provides valuable information on the factors behind the evolution of the

Internet ecosystem.

Our contribution can be summarized as follows. We find that groups of compa-

nies homogeneous with reference to their service offering – e.g. transit providers –

are positively correlated in the stock market. Similarly, we find that even geographi-

cally close companies are positively correlated, suggesting the existence of common

economic factors driving geographically homogeneous companies. In addition, the

topological arrangement obtained through the MST can be used to derive a mean-

ingful taxonomy of the ASes. New evidence on the factors underlying the AS-level

network time evolution is given by combining its properties with stock market data.

We highlight the existence of factors, common to all ASes, able to drive the evolution

of global features. Other factors, specific for each AS, determine strong correlations

between local features. We also show that factors governing AS stock price vari-

ations are not the same as those synchronously driving the variations of AS-level

features.

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 59

4.1.2 Related Work

Great interest and dedication has been shown so far in the analysis and modeling

of the Internet AS-level network. An intense research activity has begun to emerge

after the seminal works [56] and [2]. Analyses and models strongly depend on mea-

surement data provided by projects such as IRL, CAIDA Ark and DIMES. Analyses

(e.g. [125] [65] and references therein) rely on measurements to draw meaningful

conclusions on the structural properties of the AS-level network. Models (see [194]

for an accurate review an evolutionary comparison) rely on them for validation. Unfor-

tunately, the ability to accurately map the AS-level network was shown to be fraught

with difficulties and dangers [167]. Difficulties are encountered for example when

detecting certain kinds of BGP sessions [40] [140] or when inferring the physical

devices belonging to each AS [37]. Dangers are due to the “as-is” use of available

measurement data as good proxies of the real underlying AS-level network [99].

To overcome these obstacles, researchers designed and deployed novel mea-

surement infrastructures [55] [5], with the aim of providing an increasingly more ac-

curate and detailed view of the network and its features. However, to the best of our

knowledge, stock market data have never been used to augment or refine the knowl-

edge we have of the AS-level network. Beginning with the pioneering work [128],

such data has successfully been used to study and find topological arrangements

of economically-principled networks and hence we believe it may provide valuable

insights also into the AS-level network structure and evolution. Similarly, although

(anti-)correlations have been observed among neighboring AS degrees [152] [151],

to the best of our knowledge cross correlations between time-evolving AS-level con-

nectivity features have never been studied before. We believe they may be relevant

for a better understanding of the complex techno-socio-economic factors underlying

the Internet. In addition, they may contribute significantly to the design of novel evolu-

tionary or predictive models. Among the economically-principled models we mention

the works [194] and [121]. In [194] the authors assume that AS wealth is the result of

a multiplicative stochastic process and keep the degree of each AS proportional to its

wealth. In the agent-based model proposed in [121] ASes optimize their cost-based

fitness function according to provider or peering strategies.

60 4.1. NETWORKS, INTERNET COMPANIES, AND STOCK MARKETS

Fig. 4.1. A network sampled at four different times t0, · · · , t3 (top) and time series associated
to the degree of each node i = 1, · · · , 5 (bottom). By looking at the shapes of such time series
it is possible to qualitatively assess the correlations between nodes – the Pearson correlation
coefficient is used for quantitative assessments. Indeed, the first three nodes undergo very
similar variations and this will result in high values of the correlations coefficients.

4.1.3 Methodology

In general, given a feature Pi of node i (e.g. a connectivity feature such as the de-

gree, as well as the stock price), we keep track of i’s changes in time with reference

to that feature via the time series

p̂i(t) = lnPi(t+∆t)− lnPi(t), (4.1)

where ∆t is a relative time. Then, we adjust the changes to a common scale as

pi(t) =
p̂i(t)− µ̂i

σ̂i
, (4.2)

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 61

where µ̂i is an average over time and σ̂i the standard deviation of p̂i(t). We then

determine correlations between adjusted changes using the bivariate Pearson cor-

relation coefficient

ci,j = E{pi(t)pj(t)}, (4.3)

which ranges from −1 (maximum anti-correlation) to 1 (maximum correlation) and is

0 when changes are uncorrelated. We arrange this correlation coefficients to form a

correlation matrix C = [ci,j]. In Fig. 4.1 we give an example of how we characterize

and keep track of nodes’ degree changes in time. Intuitively, nodes 1, 2 and 3 are very

similar in terms of their degree evolution in time and this will turn into high correlation

coefficients between them.

Unfortunately, the correlation coefficient does not represent a distance function

for any Euclidean space. Therefore, it cannot be used either to build up a hierarchy

or to arrange features in a topological space. Hence, we use the distance function

d(i, j) =
√

2(1− cij), which defines a metric space by fulfilling the three axioms of

an Euclidean distance [127]. We obtain the hierarchical organization by extracting

a ultrametric space [160] from the metric one. Practically, this is achieved via the

single-linkage clustering procedure [173], which disposes features on the branches

of a unique hierarchical tree. Single-linkage clustering is an ascending, bottom-up

aggregation procedure. Initially, each node feature is in a different branch and, at

each step, the two closest branches are aggregated into one larger branch. Distance

between two branches is the minimum distance between any feature of one branch

and any feature of the other. We also construct the MST connecting features in the

metric space, in order to emphasize their hierarchical organization and to arrange

them in a topological space. The MST – which alone contains all the information

for carrying out single-linkage clustering [64] – gives an alternative way to highlight

hierarchies among the investigated features.

4.1.4 Investigated Companies

In this thesis we focus our attention on a subset of large, publicly traded companies

all over the world owning at least an AS. Typically, all these companies offer a rich

62 4.1. NETWORKS, INTERNET COMPANIES, AND STOCK MARKETS

Company Service H.Q. Ticker Symbol Market

AT&T t1tp NA T NYSE

Verizon t1tp NA VZ NYSE

Sprint t1tp NA S NYSE

Inteliquent t1tp NA IQNT Nasdaq

CenturyLink t1tp NA CTL NYSE

Deutsche Telekom t1tp EU DTE.DE XETRA

Telecom Italia t1tp EU TIT.MI Milan

Telefonica t1tp EU TEF.MC Madrid

TeliaSonera t1tp EU TLSN.ST Stockholm

NTT t1tp A NTT NYSE

Level3 t1tp NA LVLT NYSE

TATA Comm. t1tp A TATACOMM.NS Bombay

Cogent tp NA CCOI Nasdaq

TW Telecom tp NA TWTC Nasdaq

Akamai cdn NA AKAM Nasdaq

Limelight cdn NA LLNW Nasdaq

Rackspace cdn NA RAX NYSE

InterNAP cdn NA INAP Nasdaq

Equinix ixp NA EQIX Nasdaq

Table 4.1. Companies considered in the study

portfolio of Internet services. However, each one has a main service which can easily

be recognized by looking at its history and activity. Hence, we based our selection on

the main service offered and chosen: 14 large IP transit providers; 4 content delivery

networks; and 1 internet exchange point. An IP transit provider (tp) carries IP traffic,

enabling paying customer ASes to reach the whole Internet. If a tp has full, free-of-

charge Internet reachability, then is termed Tier-1 (t1tp). A content delivery network

(cdn) serves content (e.g. web and multimedia objects) to end-users with high avail-

ability and high performance. Content providers pay cdns to better distribute their

content among users. An Internet exchange point (ixp) is a physical facility that en-

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 63

ables Internet companies to directly exchange their traffic, without paying for transit.

ixps are mainly used by companies with the aim of reducing their costs by bypassing

t1tps. In Tab. 4.1 we list selected companies and indicate the geographical location

of their headqurters – Europe (EU), North America (NA) or Asia (A). In addition,

we report their main service offered, the ticker symbol identifying them in the stock

market and the stock market where stocks are traded. Autonomous System Num-

bers (ASNs) are the following: AT&T (7018), Verizon (701), Sprint (1239), Inteliquent

(3257), CenturyLink (209, 3561), Deutsche Telekom (3320), Telecom Italia (6762),

Telefonica (12956), TeliaSonera (1299), NTT (2914), Level3 (3356, 3549, 1), TATA

Communications (6453), Cogent (174), TW Telecom (4323), Akamai (20940), Lime-

light (22822), Rackspace (15395), InterNAP (11855) and Equinix ([many]). AS-level

topologies are generated using the data available from the Internet Research Lab

(IRL) website1 – outliers in data are discarded using the Chauvenet’s criterion [13].

To study companies under investigation, we consider both the stock price and

5 AS-level connectivity features. We are aware that the stock price is an aggregate

economical indicator and that other indicators may be able to capture company’s

situation in more detail – e.g. revenue, sales and investments. Nevertheless, while

such indicators are often difficult to obtain, the stock price is publicly available and to

some extent condenses in a nutshell several aspects of a company. In the present

study we focus on a time span from January 2008 to September 2012. However, we

observed that different time spans do not lead to significant changes in the results.

We retrieved historical stock closure prices data from Yahoo!2. Monthly (rather than

daily) synchronous cross correlations are considered when combining stock market

data with AS-level connectivity features – closure prices are averaged on a monthly

basis. Due to the incompleteness and the errors affecting AS-level topologies, a daily

study of cross correlations would appear to have little meaning. AS-level connectivity

features considered are the following:

• Degree (de): Is the number of BGP sessions an AS established with other ASes,

i.e. with its neighbors.

• Average neighbor degree (knn): Is the average degree of the neighbors of an AS.
1 http://irl.cs.ucla.edu/topology/
2 http://finance.yahoo.com/

http://irl.cs.ucla.edu/topology/
http://finance.yahoo.com/

64 4.1. NETWORKS, INTERNET COMPANIES, AND STOCK MARKETS

• Clustering coefficient (cc): Quantifies how close the neighbors of an AS are to

being a clique, i.e. a complete graph.

• Eigenvector centrality (ei): Is a measure of the importance of an AS. It assigns

relative scores to ASes based on the principle that connections to high-scoring

ASes contribute more to the score of the AS in question than equal connections

to low-scoring ASes.

• Coreness (co): A k-core is a maximal subgraph of the AS-level network in which

each AS has at least degree k. If an AS belongs to the k-core but not to the

(k + 1)-core, then is said to have coreness k.

We refer the reader to Chapter 2 for a thorough description of the aforementioned

features. Selected features are able to capture: direct AS connectivity – de; connec-

tivity patterns in the neighborhood of the AS – knn and cc; and global connectivity

features – ei and co. Indeed, while de simply accounts for the number of neighbors

an AS has, knn and cc also tell relevant information on neighbors’ BGP connectivity.

Specifically, knn is an average indicator of the propensity of neighboring ASes to es-

tablish BGP sessions with the rest of the network. Similarly, cc gives information on

the attitude of neighbors in establishing BGP sessions with each other. Since such

features involve only neighboring ASes, we also included global features ei and co

to quantify the role of each AS in the whole network. As further discussed in the next

section, they both take into account network-wide BGP connectivity features.

4.1.5 Results

Autonomous Systems Stocks Hierarchical Organization

In Fig. 4.2 we show the MST highlighting the hierarchical organization of investigated

stocks – the lower the distance between two companies, the higher and thicker the

link connecting them. A first inspection of the MST suggests the existence of two

geographically homogeneous groups: Europe (top-left with TEF) and North America

(top-to-bottom-right with T). North American companies can be further divided into

two smaller-but-stronger subgroups bridged through the link T-EQIX: t1tps and tps

with T on the one hand, and cdns with EQIX on the other. Apparently, geography

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 65

AKAMAKAM

CCOICCOI

CTLCTL

DTEDTE

EQIXEQIX

INAPINAP

IQNTIQNT

LLNWLLNW

LVLTLVLT

NTTNTT

RAXRAX

SS

TT

TATATATA

TEFTEF

TITTIT

TLSNTLSN

TWTCTWTC

VZVZ

Fig. 4.2. Autonomous Systems stocks minimum spanning tree

seems not to play a significant role for Asiatic companies TATA and NTT, which con-

nect to the EU and the NA groups, respectively. Actually, its relevance is once again

confirmed by looking at their geographical location. Indeed, TATA is headquartered in

India, which is much closer to EU rather than NA. Similarly, NTT, which is headquar-

tered in Japan, is much closer to NA rather than EU. The absence of a well-defined

Asiatic group may be due to the small number of Asiatic companies investigated. The

hierarchical tree of the subdominant ultrametric associated to the MST is shown on

the left side of Fig. 4.3. On the right side we visually represent correlation coefficients

using colors by means of an heatmap. Mappings between colors and correlation val-

ues are reported in the top-left corner of the figure. In the same corner we also

plot an histogram highlighting the correlation coefficients distribution. The lower the

correlations a group of stocks has with others, the higher the distance at which the

branching occurs in the hierarchical tree. For the sake of example we can consider

66 4.1. NETWORKS, INTERNET COMPANIES, AND STOCK MARKETS

the branch involving TEF, DTE, TIT and TLSN. It departs early from the rest of the

tree and in fact the heatmap highlights very low to no correlations with companies not

belonging to the branch. Practically, a branch which departs from the tree at a high

distance suggests that the involved companies are subject to common economic fac-

tors and that these factors do not affect companies outside the branch. To rephrase

succinctly, it suggests the existence of economic factors which are specific only to

companies in the branch. Likewise, when a branching occurs at low distance values

– e.g. when VZ and T split into two distinct branches – companies involved are not

only subject to common economic factors each other. They also have economic fac-

tors in common with other companies that departed earlier from the same branch –

e.g. CTL.

A detailed inspection of the MST and of the branches of the associated hierarchi-

cal tree enable to identify two strongly correlated groups in the hierarchy:

• European Tier-1 transit providers (TEF, DTE, TIT, TLSN);

• North American Tier-1 transit providers (T, VZ, CTL).

Such groups correspond to dark diagonal blocks in the heatmap, which in turn

map into strongly connected parts of the topological arrangement obtained through

the MST. Discovered groups cluster together t1tp companies even if (first group) their

stocks are traded in different markets. In addition we observe that any company in

such groupings is also a telecommunications operator. Once again, we stress on the

other striking feature of these groupings, i.e. their geographical homogeneity.

Two less strong groups correspond to:

• North American large, non-Tier-1 transit providers (TWTC, CCOI);

• North American ixps and content delivery service providers (EQIX, RAX).

Companies in these smaller groups have less pronounced correlations. Neverthe-

less, they are topologically close to similar companies in terms of service offerings

and headquarters location. Indeed, TWTC and CCOI are close to the north Ameri-

can t1tp in the topological arrangement obtained with the MST. This is reasonable if

we look at the historical debates about their role as t1tps or simply tps in the Internet.

Similarly, EQIX and RAX, are close to north American cdns AKAM and LLNW. EQIX,

which is a well-established ixp, has tens of datacenters all around the world enabling

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 67

T
A
T
A

L
V

L
T

IQ
N

T

L
L

N
W

T
L

S
N

.S
T

T
IT

.M
I

D
T

E
.D

E

T
E

F
.M

C

N
T

T

IN
A

P

A
K

A
M S

R
A

X

E
Q

IX

C
C

O
I

T
W

T
C

C
T

L

V
Z T

T

VZ

CTL

TWTC

CCOI

EQIX

RAX

S

AKAM

INAP

NTT

TEF.MC

DTE.DE

TIT.MI

TLSN.ST

LLNW

IQNT

LVLT

TATA

Autonomous Systems’ Stocks
Hierarchical Organization

−1 0 0.5 1

Value

0
2

0
4

0

Color Key
and Histogram

C
o

u
n

t

Fig. 4.3. Autonomous Systems stocks hierarchical tree

it to offer also cdn services. A similar explanation can be given for INAP, which is

connected to t1tps rather than cdns. Indeed, as also pointed out in its services port-

folio, it strongly relies on t1tps to distribute contents in the Internet and also offers

transit services on its own.

To sum up, the observed groups are meaningful from an economic standpoint

since they are composed of companies homogeneous with respect to service of-

fering and geographical location. This empirical evidence suggests the existence of

common economic factors driving the synchronous time evolution of geographically

homogeneous companies. Additionally, within the same location, companies offer-

68 4.1. NETWORKS, INTERNET COMPANIES, AND STOCK MARKETS

ing similar services undergo to the same economic factors, which have a service-

specific and service-exclusive nature. In contrast, very low to no correlation is found

between geographically heterogeneous companies, suggesting that economic fac-

tors vary significantly among different countries. Finally, the ability of the MST and

the hierarchical tree in isolating homogeneous groups suggests their use in deriving

meaningful AS taxonomies.

Combining AS-level Topological Properties with Stock Prices

In Fig. 4.4 we show the MST obtained by combining stocks and connectivity features.

Nodes are labeled with abbreviated, dot-separated company and property names.

Space constraints do not allow us to show the hierarchical tree. An inspection of the

MST highlights two distinct kinds of groups:

• Large groups, heterogeneous with respect to the company but strongly homoge-

neous with respect to the property;

• Small, single-company groups of heterogeneous features (clustering coefficient

and average neighbor degree).

Large groups are three and emphasize the presence of synchronous cross corre-

lations among heterogeneous companies with reference to their variations in: stock

price (top-right yellow group); coreness (green group in the center); and eigenvector

centrality (left star-like purple group). The latter three features are global, uncontrol-

lable and almost completely independent of the single company. They depend on the

whole Internet ecosystem. For example, stock prices are influenced by global market

trends – their fluctuations do not depend only on the single company. Similarly, core-

ness and eigenvector centrality depend on the whole AS-level network, and not on

the single AS or on its neighborhood. An AS cannot control its eigenvector central-

ity (coreness) since it strongly depend on the centrality (coreness) of its neighbors,

which in turn depends on the centrality (coreness) of their neighbors, and so on.

Therefore, empirical evidence suggest the existence of common, ecosystem-wide

factors, that cause simultaneous similar variations of global features among all the

Internet companies. For this reason, we argue that the very nature of these factors is

embedded in the Internet ecosystem as a whole and not in smaller sub-parts of it. In

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 69

AKAM.ccAKAM.cc

AKAM.coAKAM.co

AKAM.deAKAM.deAKAM.eiAKAM.ei

AKAM.knAKAM.kn

AKAM.stAKAM.st

CCOI.ccCCOI.cc

CCOI.coCCOI.co

CCOI.deCCOI.de

CCOI.eiCCOI.ei

CCOI.knCCOI.kn

CCOI.stCCOI.st

CTL(Qwest).ccCTL(Qwest).cc

CTL(Qwest).coCTL(Qwest).co

CTL(Qwest).deCTL(Qwest).de

CTL(Qwest).eiCTL(Qwest).ei

CTL(Qwest).knCTL(Qwest).kn

CTL(Savvis).ccCTL(Savvis).cc

CTL(Savvis).coCTL(Savvis).co

CTL(Savvis).deCTL(Savvis).de

CTL(Savvis).eiCTL(Savvis).ei

CTL(Savvis).knCTL(Savvis).kn

CTL.stCTL.st

DTE.DE.ccDTE.DE.cc

DTE.DE.coDTE.DE.co

DTE.DE.deDTE.DE.de

DTE.DE.eiDTE.DE.ei

DTE.DE.knDTE.DE.kn

DTE.DE.stDTE.DE.st

EQIX.stEQIX.st

INAP.ccINAP.cc

INAP.coINAP.co

INAP.deINAP.de

INAP.eiINAP.ei

INAP.knINAP.kn

INAP.stINAP.st

IQNT.ccIQNT.cc

IQNT.coIQNT.co

IQNT.deIQNT.de

IQNT.eiIQNT.ei

IQNT.knIQNT.kn

IQNT.stIQNT.st

LLNW.ccLLNW.cc

LLNW.coLLNW.co

LLNW.deLLNW.de

LLNW.eiLLNW.ei

LLNW.knLLNW.kn

LLNW.stLLNW.st

LVLT(Glbx).ccLVLT(Glbx).cc

LVLT(Glbx).coLVLT(Glbx).co

LVLT(Glbx).deLVLT(Glbx).de

LVLT(Glbx).eiLVLT(Glbx).ei

LVLT(Glbx).knLVLT(Glbx).kn

LVLT.ccLVLT.cc

LVLT.coLVLT.co

LVLT.deLVLT.de

LVLT.eiLVLT.ei

LVLT.knLVLT.kn

LVLT.stLVLT.st

NTT.ccNTT.cc
NTT.coNTT.co

NTT.deNTT.de

NTT.eiNTT.ei

NTT.knNTT.kn

NTT.stNTT.st

RAX.ccRAX.cc

RAX.coRAX.co

RAX.deRAX.de

RAX.eiRAX.ei

RAX.knRAX.kn

RAX.stRAX.st

S.ccS.cc
S.coS.co

S.deS.de

S.eiS.ei

S.knS.kn

S.stS.st

T.ccT.cc

T.coT.co

T.deT.de

T.eiT.ei
T.knT.kn

T.stT.st
TATACOMM.NS.ccTATACOMM.NS.cc

TATACOMM.NS.coTATACOMM.NS.co

TATACOMM.NS.deTATACOMM.NS.de

TATACOMM.NS.eiTATACOMM.NS.ei

TATACOMM.NS.knTATACOMM.NS.kn

TATACOMM.NS.stTATACOMM.NS.st

TEF.MC.ccTEF.MC.cc

TEF.MC.coTEF.MC.co

TEF.MC.deTEF.MC.de

TEF.MC.eiTEF.MC.ei

TEF.MC.knTEF.MC.kn

TEF.MC.stTEF.MC.st

TIT.MI.ccTIT.MI.cc

TIT.MI.coTIT.MI.co

TIT.MI.deTIT.MI.de

TIT.MI.eiTIT.MI.ei

TIT.MI.knTIT.MI.kn

TIT.MI.stTIT.MI.st

TLSN.ST.ccTLSN.ST.cc

TLSN.ST.coTLSN.ST.co

TLSN.ST.deTLSN.ST.de

TLSN.ST.eiTLSN.ST.ei

TLSN.ST.knTLSN.ST.kn

TLSN.ST.stTLSN.ST.st

TWTC.ccTWTC.cc

TWTC.coTWTC.co

TWTC.deTWTC.de

TWTC.eiTWTC.ei

TWTC.knTWTC.kn

TWTC.stTWTC.st

VZ.ccVZ.cc

VZ.coVZ.co

VZ.deVZ.de

VZ.eiVZ.ei

VZ.knVZ.kn

VZ.stVZ.st

Fig. 4.4. Autonomous Systems stocks and connectivity features minimum spanning tree

70 4.1. NETWORKS, INTERNET COMPANIES, AND STOCK MARKETS

addition, we observe that global factors underlying stock price variations are not the

same as those governing neither the coreness nor the eigenvector centrality – no to

very low correlation is measured.

Small, single-company groups (in dark blue) always capture strong correlations

between clustering coefficient (cc) and average neighbor degree (knn) for each in-

vestigated AS, except for RAX. Strong correlations are highlighted by the thick, dark

edges directly connecting cc and knn. Much lower correlations of these features are

observed among different ASes. Therefore, empirical evidence supports the exis-

tence of company-specific factors determining per-AS independent neighbor selec-

tion processes. Indeed, there is a virtually zero chance that over time ASes choose

(or are chosen by) either the same neighbors or neighbors with similar BGP connec-

tivity features. If two ASes established BGP sessions with the same neighbors (or

with neighbors having similar connectivity features), they would have same values

for cc and knn and maximum positive cross correlation. It follows, therefore, that the

aforementioned company-specific factors not only yield independent neighbor selec-

tion processes, they also cause each AS to establish BGP sessions with different

ASes. In other words, there is a negligible chance that investigated ASes choose (or

are chosen by) the same neighbors in the whole AS-level network.

4.1.6 Conclusion and Future Directions

In the present section we investigated synchronous cross correlations between stock

market data and AS-level connectivity features. We found that groups of companies

headquartered in the same location and offering similar services tend to be strongly

correlated, suggesting that they are subject, in a statistical way, to the same eco-

nomic factors. We also discussed on the existence and nature of common factors

underlying the evolution in time of AS global and local connectivity features.

We believe our novel approach provides valuable insights for example for design-

ing new predictive or evolutionary AS-level models, as well as for validating existing

ones. A model may take our results into account in order to design mechanisms

able to rewire/grow/shrink the AS-level network in a way that cross correlations are

preserved where necessary. We observed that stock market data cannot be used to

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 71

infer synchronous variations in connectivity features. Nevertheless, our study paves

the way for a fascinating list of new scientific questions, among which: “What if we

consider cross correlations as functions of the time lag?”, “Current stock market data

can predict future trends in AS-level connectivity features (or vice versa)?”, “Extend-

ing the set of publicly traded Internet companies may lead to new insights into market

or AS-level dynamics?”, “What if we extend the set of ASes, selecting for example

large content providers such as Google or Amazon?”, “What if we exploit aggregate

indices such as the S&P500 or the gross domestic product of countries?”, “May other

per-company indicators (e.g. revenue, sales) be used to gain further insights?”.

72 4.2. NETWORK MODELS OF THE INTERNET DNS TRAFFIC

4.2 Network Models of the Internet DNS Traffic

4.2.1 Introduction and Related Work

The Domain Name System (DNS) is a an essential component of the Internet

used to associate symbolic host names with numeric IP addresses. Internet service

providers often perceive the DNS as a core system they must keep up and running

as their customers rely on it, but being it a service that does not bring revenues,

they do not usually invest much on it. The consequence is that ISP’s DNS servers,

also known as resolvers, are sometimes slow in responses [41], and this has opened

the market to public DNS servers such as OpenDNS and Google Public DNS. Be-

side premium services, such public DNSes offer the service at no cost while making

revenues through advertisements, web traffic redirection and mining of DNS data.

Although the DNS is perceived as a critical infrastructure [33], all publicly available

DNS traffic monitoring tools [154] [54] focus only on aggregate values such as the

type and number of queries received by a DNS server [144]. Research and academia

have focused on DNS for the purpose of identifying malicious activities [9] [17] [57],

managing large DNS infrastructures [36], understanding how DNS server selection

and caching works in reality [199] [145], and modeling its infrastructure in order to

predict how DNS traffic will change under specific conditions [201]. Unfortunately,

there is a lack of specific models for DNS traffic [1] [30]. Such models, can be of

fundamental importance for understanding patterns, or identifying malicious activities

as well as trends and interests in the Internet.

Internet trends and interests are the focus of Periodic reports such as Google

Zeitgeist [63] and Akamai State of the Internet [177]. They contain various types of

information such as the number of Internet users, top queries on search engines,

popular hashtags on social networks and percentage of spam emails per day. Al-

though the DNS can potentially be a good source of data for understanding Internet

usage [80], publicly available reports [176] [143] focus only on the number of reg-

istered domains per Top Level Domain (TLD), DNS servers performance, or aggre-

gated query reports, without disclosing information about Internet usage and trends.

Methods for scoring web pages [28] have been out for years, and are profitably used

by search engines to return searches sorted according to web page ranking. Similar

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 73

methods recently appeared also for DNS [75] [180] [76] although to date there are

no public DNS traffic reports based on such methods. Ranking Internet domains is

needed to generate detailed traffic reports focusing on popular domains, and report

about the trends and interests related to Internet domains.

Driven by the aforementioned motivations, in this section we present the following

original contributions. Firstly, we propose novel methodologies to produce network-

based models of the DNS traffic. Secondly, leveraging on these models, we develop

novel ranking methodologies for Internet domains.

More precisely, we demonstrate, by means of a large-scale validation at “.it” coun-

try code Top Level Domain (ccTLD) DNS servers, that our contributions pave the way

to:

1. Define domain rankings according to their popularity among resolvers and vice

versa.

2. Identify the most popular resolvers so that it is possible to change traffic policies

with the aim of providing these resolvers a lower response time. This can be

achieved for example by minimizing the Round Trip Time (RTT) between the

authoritative name servers and the resolvers using them.

3. Unveil domains inter-relationships. Are Internet domains fully independent or can

they be clustered based on user interests or economical relationships? Groups

of similar domains (e.g. e-commerce sites) can be used as a market indicator for

speculating how a given market sector performs over time.

4. List resolvers that are likely to misbehave (e.g. do not obey to the Time To Live

(TTL) specified for domains they are sending queries for) and that thus need to

be monitored more closely as they might perform malicious activities.

5. Rank domains according to the traffic type (e.g. web and email), countries where

resolvers are located, density of queries according to the time of the day (e.g.

a domain that receives queries according to the Italian working hours is likely to

identify a company/individual that is interesting only for domestic users and not

a global player).

6. Identify resolvers that might be used by email spammers, and domains that are

likely to be targets of email attacks.

74 4.2. NETWORK MODELS OF THE INTERNET DNS TRAFFIC

.it

a.root-servers.net

(root NS)

a.dns.it

(.it NS)

ns.ita.tip.net

(NS of corriere.it)

www.corriere.it

1

2

3
4

5
6

7
8

HTTP

Internet User

http://www.corriere.it

DNS

Resolver

Fig. 4.5. Steps in DNS resolution of www.corriere.it

4.2.2 Understanding The DNS System

Iterative Domain Name Resolution

The domain name system is based on a hierarchical distributed architecture used to

map domain names to resource records containing various types of data including

numeric IP addresses (A record for IPv4 and AAAA for IPv6), names (NS record) and

mail exchange servers (MX records) [8]. The DNS resolver is the client side of the

DNS system, responsible for performing address resolution by starting from the top

of the hierarchy (i.e., the root zone). The root zone is served by 13 root name servers,

most of which with anycast addressing [87]. The address resolution process is itera-

tive and involves contacting several name servers, each one responsible (i.e., author-

itative) for a part of the domain name. In Fig. 4.5 we show an example. The process

is triggered by an Internet user which, with the aim of establishing an HTTP session,

queries a DNS resolver to obtain the IP address of www.corriere.it. The DNS

resolver sequentially contact three name servers: the first (a.root-servers.net)

replies indicating a.dns.it as authoritative name server for .it domain names; the

second (a.dns.it) replies indicating that ns.ita.tip.net is authoritative for do-

main names ending with corriere.it; the third (ns.ita.tip.net), authoritative for

www.corriere.it replies with the address of the host. Once the DNS resolver has

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 75

received the IP address from the last authoritative server, it send it to the user which

eventually establishes an HTTP session with www.corriere.it.

DNS Records Caching

Each record has a Time To Live (TTL) [92], that can range from 0 (i.e., no cache)

to days or weeks. It determines for how long the given response record can be kept

in cache. The consequence of the DNS caching architecture is that DNS record

updates do not propagate immediately in the network until cached records expire.

Record caching is a pretty complex mechanism [92] as all DNS records used in

the resolution process do not necessarily have uniform TTL values. Supposing that

a DNS resolver starts with an empty cache the resolution of www.corriere.it, its

cache at the end of the iterative process will be populated with several records –

each one with its own TTL. For example, the A record of www.corriere.it has TTL

equal to 600 seconds, shorter than the NS record of corriere.it (10,800 seconds)

and shorter than the NS record of .it (172,800 seconds). So if www.corriere.it

is requested after 700 seconds, the DNS resolver will no longer have its IP in cache

as the A record expired in the meantime. However, it will still have in cache the NS

records for corriere.it and .it. The resolver will contact again “.it” DNS servers

only after the NS record for corriere.it has expired3.

To make caching even more complex to understand, differences in DNS imple-

mentations must also be taken into account. In the above example, the NS record

for corriere.it has a TTL of 10,800 seconds as it has been set by all the “.it” DNS

servers, but as its TTL reported by the authoritative DNS of corriere.it is 600 sec-

onds (i.e., dig -t NS corriere.it ns.ita.tip.net) some DNS implementations

might override 10,800 with 600, making harder to predict the resolver cache con-

tents.

Data caching must be taken into account when monitoring DNS traffic. Indeed,

supposing that two domains are equally contacted during the day by a given resolver,

the name servers for the domain with lower TTL will receive more queries than the
3 It is worth to remark a name server can have different TTL values for NS records of domains

it is authoritative for. Thus even within a single domain, TTLs might not be necessarily
uniform.

76 4.2. NETWORK MODELS OF THE INTERNET DNS TRAFFIC

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

P
(T

T
L
 >

 t
)

t [s]

Fig. 4.6. TTL CCDF for .it Domains

name servers of the other domain, even though both domains have been contacted

the same number of times by end-clients. Figure 4.6 shows the TTL complementary

cumulative distribution function (CCDF) of .it domains. As shown in figure, it turns

out that over 98% of .it domains have a TTL less than 86400 seconds, i.e. 1 day.

Monitoring DNS Traffic

As anticipated above, we are monitoring the DNS traffic at “.it” ccTLD DNS servers.

This means that we only observe queries for .it (i.e., we do not observe queries

for .org or .net) and only for those domains for which “.it” DNS servers are au-

thoritative. Out of all the DNS traffic we observe, in the methodology described later

in this thesis, we take into account only the AAAA, A, and MX records. In addition,

for A and AAAA records, we ignore queries for both hosts that are known to be

DNS servers and for which “.it” DNS servers are not authoritative (e.g. A record of

www.sub-domain.domain.it). The reasons why we discard these queries are many-

fold:

• Records other than A, AAAA, MX are used by the DNS infrastructure to resolve

addresses (e.g. the NS record) or as ancillary records (e.g. PX records).

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 77

• A and AAAA record queries (as well NS records) for hosts that are DNS servers

should not be taken into account because:

– They have been requested due to the DNS caching mechanism where A

records of DNS servers expire at different times than the corresponding NS

record.

– DNS servers are usually authoritative for many domains, and thus whenever

we observe a A/AAAA record query for a DNS server, it is not possible to

associate it with the domain name for which it has been requested.

In conclusion, we do not need to account all DNS queries but only those that

indicate user activity such as an MX record query that indicate that an email will be

sent, or A and AAAA records of hosts other than DNS servers (e.g. www.nic.it)

that instead are used by the DNS system to resolve addresses. Please note that in

theory, for a given resolver, once a record has been put in cache, no further query

for the same record will be issued before the record expires as specified by the TTL.

In practice this does not always hold, as most resolvers select authoritative name

servers based on their response time. This explains why we often observe some

extra queries used by resolvers to estimate the response time of all authoritative

DNS servers for a given Internet domain. Thus beside these probing queries, we

can identify resolvers that do not obey to the DNS specification when they perform

queries that are well above the limit set by the TTL for the specified record. It is worth

to remark, that resolvers identified using this method, cannot always be considered

as malicious hosts. This is because sometimes network administrators periodically

flush resolvers caches in order to reduce memory usage and thus extra queries

are observed. For this reason we mark resolvers as malicious only whenever they

significantly exceed the number of queries specified by the TTL.

4.2.3 DNS Modeling Methodologies

4.2.3.1 Normalizing Non-Uniform TTL Values

In order to model DNS traffic, we need to take into account the TTL and not just

count DNS queries. In fact, if domain A has a TTL greater than domain B, a resolver

that has to resolve both A and B addresses continuously throughout the day, will

78 4.2. NETWORK MODELS OF THE INTERNET DNS TRAFFIC

issue fewer queries for A than B, as A records have a longer cache lifetime than B

records. Since we need to deal with all the “.it” domains, our methodologies should

enable domains with heterogeneous TTL values to be compared. This means that

TTLs have to be normalized to the maximum TTL value among all the observed TTL

values for NS records. As we measured that less than 2% of – about 2.5 million at

the date of writing – “.it” domains use a TTL greater than 86,400 sec (1 day), we

decided to use 1 day as baseline for our graph theoretical DNS models.

4.2.3.2 Bipartite Network Models of the DNS

A very effective way of modeling resolvers, domains and their interactions is through

an undirected bipartite graph4 G = (V,E), such that V = R ∪D and R ∩D = ∅. We

take as R the set of resolvers and as D the set of domains. We shall recall that the

bipartite graph G can be represented with an adjacency matrix of the form

A =

 0 B

BT 0

 ,

where B = [br,d] is a matrix with |R| rows and |D| columns, that uniquely identifies

G.

In general, a bipartite graph of the DNS can be built by placing edges between

a resolver r ∈ R and a domain d ∈ D whenever a certain condition is met. In this

thesis we generate the following bipartite graphs:

• GALL: we place an edge between r and d iff r issued at least one DNS query for

d in the observation period for A, AAA and MX records.

• GWEB : we place an edge between r and d iff r issued at least one DNS query

for d in the observation period for A and AAAA records and specify a name which

is: the domain name with no host specified (e.g. nic.it); or the domain name

preceded by either www or web (e.g. www.nic.it). In essence, we consider only

those DNS queries that should be originated uniquely by web traffic5.
4 The reader may refer to Chapter 2 for definitions and terminology.
5 We are aware that using this approach, some web traffic might not be accounted. This hap-

pens whenever a resolver 1) issues queries for hosts that are not marked as web although

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 79

• GMX : we place an edge between r and d iff r issued at least one DNS query

for d in the observation period for MX records. In essence we consider only .it

Internet domains email traffic6.

In all the previous cases, once the condition is met, the degree of a resolver r ∈ R

equals the number of domains it issues queries for. Similarly, the degree of a domain

d ∈ D represents the number of resolvers that query a given domain name. Since

we excluded isolated nodes, i.e. resolvers and domains with zero degree, we have

that degrees are always not less than one.

4.2.3.3 Common-Neighbors Network Models of the DNS

Internet domains and DNS resolvers can also be modelled in a way that the con-

cept of adjacency becomes associated to the number of their common neighbors.

In the case of two domains d1 and d2, common neighbors represent DNS re-

solvers which issue queries for both d1 and d2. This value is obtained by multiplying

element-by-element columns of B with indices d1 and d2 and summing the result, i.e.∑|R|
r=1 br,d1br,d2 . Equivalently, the number of common resolvers can be directly com-

puted for any pair of domains by taking the matrix product BTB. Assuming the latter

product is an adjacency matrix of a weighted graph GD = (D,ED), then it turns out

that GD has D as its set of nodes. In addition, any of its edges (d1, d2) ∈ ED is asso-

ciated with a positive weight corresponding to the number of resolvers shared by d1

and d2. Similarly, the number of common domains for each pair of resolvers can be

obtained by computing BBT , which in turn can be taken as the adjacency matrix of a

weighted graph GR = (R,ER) having R as its set of nodes. Each edge (r1, r2) ∈ ER
is associated with a positive weight corresponding to the number of domains shared

by r1 and r2.

they are in practice a web site (e.g. video.mysite.it) or 2) has issued a query for a record
other than www (e.g. mx.nic.it) prior to issue a query for www. In this case, since the resolver
cache was already filled-up, the query for www could not be observed. We estimate these
are few cases as the probability that a web user makes non-web activity with a domain prior
to access the web site is small.

6 It is worth to remark, that in case a domain name has no MX record defined, email senders
query the A record of the domain name. This means that queries for the exact domain name
can either be due to emails or web traffic. In general as most domains have the MX record
defined, we account queries for exact domain name into web traffic.

80 4.2. NETWORK MODELS OF THE INTERNET DNS TRAFFIC

4.2.4 DNS Ranking Methodologies

As we have introduced DNS traffic models, we can now focus on how to suitably

assess the relevance of resolvers and domains. In order to do that, we need to assign

domains/resolvers a score that can will be used as baseline for their ranking. In

particular, we define two rankings by sorting resolvers and domains in a decreasing

order of node degree and eigenvector centrality. We refer the reader to Chapter 2 for

a thorough discussion of these network features.

Node Degree

The degree of a node i is the number of nodes adjacent with i. Hence, in the case of

a domain d ∈ D in any of the bipartite graphs described above, its degree counts the

number of resolvers issuing queries for it. Similarly, the degree of a resolver r ∈ R

gives the number of .it domains it issues queries for.

Eigenvector Centrality

We choose the relevance of a domain in a way that it is directly proportional to the

sum of the relevance of resolvers issuing queries for it. Similarly, the relevance of a

resolver is chosen to be directly proportional to the sum of the relevance of domains

it issues queries for. Formally, the relevance xi of resolver (domain) i is measured

as xi = λ−1
∑n
j=1 ai,jxj . This measure can be written in matrix form as the eigen-

vector equation Ax = λx [23]. In general, there are many eigenvalues for which an

eigenvector exists. However, with the additional requirement that components xi of

x be non-negative, then the Perron-Frobenius theorem ensures that λ is the largest

(in absolute value) eigenvalue and x the corresponding eigenvector. As future work

we plan to evaluate additional methods of graph theory for defining new ranks, such

as strength, coreness, closeness, and betweeness.

4.2.5 Results and Validation

The “.it” zone has seven administrative DNS servers, three of which with any-

cast addresses. The “.it” DNS monitoring system [46] we used for validating this

work monitors four authoritative name servers. Two name servers have anycast

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 81

Property GALL GWEB GMX

no. of edges 33,047,646 17,896,183 2,099,030

no. of domains 1,779,249 1,693,180 323,956

no. of resolvers 511,039 294,091 99,016

avg. d. degree 18.75 10.57 6.48

avg. r. degree 64.67 60.86 21.20

Table 4.2. Structural properties of bipartite DNS networks

Structural properties of bipartite DNS graphs

address (a.dns.it located in Rome and Milan) and two have unicast address

(dns.nic.it and nameserver.nic.it, both located in Pisa). Every “.it” DNS server

node serves about 40 million requests/day, and we passively collect DNS traffic using

a home-grown open-source NetFlow probe [61] featuring a plugin for dissecting DNS

query/responses. This solution allows us to be independent from the DNS implemen-

tation being used, and thus be general enough to use it on different contexts. The

system is producing daily domain ranking since Jan 2013. In this section we present

the monitoring results we observed on Jan 4th, 2013 while monitoring dns.nic.it.

Every night we consolidate the DNS traffic logs produced by the probe, and produce:

• The GALL, GWEB , GMX graphs.

• The domain and resolver rankings based on score we described on this thesis.

• The consolidated list of suspicious DNS activities carried on by resolvers that we

use to spot potential issues.

Structural Properties of DNS Graphs

Structural properties of bipartite graphs GALL, GWEB , GMX are reported in Tab. 4.2.

For each graph we indicate: the number of edges |E|; the number of domains |D|

and resolvers |R| with degree greater than zero; the average domain degree dD =

|D|−1
∑
d∈D dd; and the average resolver degree dR = |R|−1

∑
r∈R dr.

We observe thatGWEB has half the edges ofGALL. In addition, while the number

of domains is slightly smaller, resolvers reduce significantly (from more than 500,000

82 4.2. NETWORK MODELS OF THE INTERNET DNS TRAFFIC

to less than 300,000), highlighting that a large part of them is not interested in re-

solving names for web resources – although web traffic may be under-estimated as

previously described in Sect. 4.2.3.2. On average, resolvers query the same num-

ber of domains in GALL and GWEB as highlighted by values of average resolver

degree which are pretty close in both cases. Each domain is resolved for its web re-

sources only one half of the times as the average domain degree halves from GALL

to GWEB . Much more significant reductions are observed for structural properties

of graph GMX , suggesting that only the 20% of resolvers issue queries uniquely

for mail. Although this fact deserves further investigation, it may indicate that one

resolver out of five has mail servers among its users.

We now deepen the analysis by further studying node degrees. In Fig. 4.7 we

show Log-Log plots of frequency fd versus degree d for domains and resolvers.

Frequency fd is the number of domains (resolvers) having degree d. These plots

span approximately 5 orders of magnitude, indicating great variability and skewness

in the degree of domains and resolvers. We observe that a single resolver can is-

sue queries for more that 100k different domains, while the maximum number of

resolvers querying a domain never exceed 50k. Nevertheless, these are statistically

rare events. Indeed, we observe that domains with a low number of queries are the

most frequent. Similarly, resolvers querying a low number of domains are the most

common. Hence, the “interest” shown for Internet domains from DNS resolvers is

far from being arbitrary. This “interest” can be quantified to some extent by observ-

ing that, for some ranges of d, plots are approximately linear in the Log-Log plots of

Fig. 4.7. Linearity in the log-log scale mean that node degree follows a power law.

Mathematically, a function f(x) follows power law if it varies proportionally to a power

γ of x, i.e., f(x) ∝ xγ . In our case, power law means that domain (resolver) i has a

chance of having degree di which is proportional to the degree raised to a constant

power γ. We estimated γ values using the method described in [39], which also pro-

vides values dmin such that power laws are obeyed only for d ≥ dmin. Power laws

fits with best γ values are plotted in Fig. 4.7 as dark lines, starting from dmin for each

degree frequency. Tails of domain degree frequency in both GALL and GWEB follow

very well power laws with strikingly close exponents. InGMX the power law is obeyed

for a much lower dmin. Similarly, power laws are observed for resolver degree fre-

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 83

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

F
re

q
u
e
n
c
y

Domain degree

all records
web
mx

power law γ = -2.27
power law γ = -2.29
power law γ = -2.11

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

F
re

q
u
e
n
c
y

Resolver degree

all records
web
mx

power law γ = -1.61
power law γ = -1.57
power law γ = -1.79

(b)

Fig. 4.7. Log-Log plots of frequency fd versus degree d.

quencies but with lower exponents, indicating slower decays. Since power laws with

exponent less that -2 have infinite mean and variance [48], we stress on the ex-

treme skewness of resolver degree. Nevertheless, also resolvers in GALL and GMX

84 4.2. NETWORK MODELS OF THE INTERNET DNS TRAFFIC

Property GD GR

no. of edges 124,717 124,750

no. of nodes 500 500

avg. edge weight 1253.72 1972.97

avg. node intensity 625,442.89 984,516.46

Table 4.3. Structural properties of Common-Neighbors DNS graphs

degree obey power laws with very close exponents. We also compared our power

law estimations with other distributions through likelihood ratio tests [39]. Such tests

suggested that frequencies may also be well approximated by stretched exponen-

tials and truncated power laws, but they definitely excluded gamma, log-normal and

exponential distributions. Further investigations are left as future work. Nevertheless,

we can conclude that a few domains (resolvers) are responsible for most of the DNS

activity and power laws well describe this activity.

We have also analysed the common-neighbors DNS graphs. We generated

weighted graphs GD and GR by selecting the top 500 highest-degree domains (re-

solvers) and all their adjacent resolvers (domains) from GALL. In both cases, the

weight of each edge equals the number of neighbors in common. Structural proper-

ties of common-neighbors graphs GD and GR are reported in Tab. 4.3. Both graphs

have a number of edges which approaches the maximum, hence any pair of do-

mains (resolvers) have at least one neighbor in common. By observing the average

edge weight, it turns out that pairs of domains on average are requested by more

than 1200 common resolvers. Similarly, pairs of resolvers on average query approx-

imately 2000 domains. In addition, average node intensities (i.e., the average of the

sum of edge weights for each node) tell that a large number of resolvers (domains)

is shared among top 500 highest-degree domains (resolvers).

In Fig. 4.8 we show the Complementary Cumulative Distribution Function (CCDF)

pED
(h) = P (wd1,d2 > h|(d1, d2) ∈ ED) giving the probability that any pair of domains

(d1, d2) ∈ ED has a number wd1,d2 of resolvers in common greater that h as function

of h. Similarly, we show the CCDF pER
(h) = P (wr1,r2 > h|(r1, r2) ∈ ER) which gives

the chance that any pair of resolvers (r1, r2) ∈ ER shares a number of domains

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 85

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
C

D
F

common neighbours h

common resolvers pED
(h)

common domains pER
(h)

Fig. 4.8. GD and GR common neighbors CCDF pED (h) for domains and pER(h) for resolvers.

Domain Name dns.nic.it a.nic.it Difference

amazon.it 1 1 =

telecomitalia.it 2 4 +2

virgilio.it 3 3 =

fastwebnet.it 4 2 -2

corriere.it 5 5 =

tiscali.it 6 6 =

aruba.it 7 5 -2

google.it 8 11 +3

vodafone.it 9 12 +3

gazzetta.it 10 8 -2

Table 4.4. “.it” domains ranking comparisons

Domain Score Comparison

wr1,r2 greater that h. Both distributions are almost identical up to 1000, whereas the

resolvers start decaying much faster than domains.

86 4.2. NETWORK MODELS OF THE INTERNET DNS TRAFFIC

We have also compared the degree of top 100 domains on two monitored name

servers (dns.nic.it and m.dns.it), assigning a score from 1 to 100 based on the

domain degree. We have found that over 93% of domains are present on both

servers, and that the domain scores are pretty close but not alike as shown in

Tab. 4.4. Resolvers score have instead a different behaviour:

• Resolver score are very different across the two name servers servers as only

52% of top 100 resolvers contacted both servers.

• For each name server, the list of top resolvers across various days reports only

minor differences.

As the Round Trip Time (RTT) is the metric used to choose between authoritative

servers for the same zone[3] [172], not all name servers are alike for resolvers as they

prefer those that reply with lower RTT7. This is also justified by a probing activity that

we have identified in our traffic traces, where several resolvers issue the same query

to all monitored “.it” authoritative name servers twice in about 10 seconds, in order

to figure out which one reports the lowest RTT; this will be the selected name server

to be used for future queries on that domain name.

Domain rankings are discussed in greater detail in the following.

Internet Domains Rankings

In this section we present domain ranking results obtained from an observation of

Jan 4th, 2013 while monitoring dns.nic.it. The monitoring system is in place since

late 2011 thus we have access to historical data series. We omit the results we have

obtained on the other three monitoring sites as they are pretty similar to what we

will present later on this section. The only differences we observe is that resolvers

select an authoritative name server based on its RTT. Hence, for each monitored site

the resolvers distribution is different in terms of queries but not in terms of edges,

confirming that resolvers randomly select authoritative servers and that they probe
7 BGP (Border Gateway Protocol) peering allows RTT to be reduced for those resolvers be-

longing to ASs (Autonomous Systems) for which there is a peering relations, thus affecting
the resolvers distribution across monitored name servers. This is because depending on
the site where the name server is located, there are non-uniform peering relationships in
place.

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 87

servers for selecting the one with lower RTT. To the best of our knowledge we have

not found in literature works similar to the one we presented nor we consider sites

such as alexa.com which have poor information for .it domains; thus we are unable

to compare our results with others. For goals listed in Sect. 4.2.1, we use the following

approaches.

Rank Degree Eig. Cent. Degree Eig. Cent.

1. amazon corriere amazon gazzetta

2. fastwebnet rcs google corriere

3. virgilio gazzetta corriere gazzettaobjects

4. telecomitalia aruba excite corrieredellosport

5. corriere virgilio imdb softonic

6. aruba excite softonic tripadvisor

7. tiscali gazzettaobjects gazzetta vogue

8. gazzetta softonic tripadvisor agi

9. rcs corriereobjects virgilio tuttosullavoro

10. rcsadv groupon ebay virginradioitaly

Table 4.5. Bipartite Graphs: top “.it” degree and eigenvector centrality domain ranking

Domain and Resolver Ranking

We rank domains and resolvers according to their node degree and eigenvector

centrality. Node degree ranks domains in terms of their degree without considering

neighboring resolvers degree. Eigenvector centrality instead takes into account both

domains and neighboring resolvers degree. In Tab. 4.5 we compare the results for top

.it domains when considering all or only web traffic as defined in Sect. 4.2.3. Both

rankings are similar but not alike. When considering the domain degree we count

just the number of resolvers that contacted the domain, without distinguishing across

resolvers degree — i.e. a resolver that queried a limited number of domains has the

same weight of a resolver that queried many more domains in the same observation

period. When using the eigenvector centrality, domains queried by resolvers with

higher scores are pushed higher in the ranking. We believe that both ranking criteria

are good, but the eigenvector centrality is probably the best as it takes into account

88 4.2. NETWORK MODELS OF THE INTERNET DNS TRAFFIC

Fig. 4.9. Common-Neighbors Maximum Spanning Tree

neighboring resolvers degree that give an indication of the size of the population

behind such resolver. This is in the assumption that resolvers with higher degree are

likely to serve a larger client population than those with a smaller degree.

Inter-domain Relationships

We build the common-neighbors graph of .it Internet domains. Specifically, we have

selected the top 500 domains according to their eigenvector centrality score from

GALL and created a their common-neighbors graph as described in Sect. 4.2.3.

Then, we extracted the maximum spanning tree [157] from the latter graph. The

maximum spanning tree is shown in Fig. 4.9. If domains d1 and d2 are connected in

the minimum spanning tree, there is no domain d3 such that: i) d1 has a number of

common neighbors with d3 greater than the number it has with d2; and ii) d2 has a

number of common neighbors with d3 greater than the number it has with d1. For-

mally, cn(d1, d2) > cn(d1, d3)+cn(d2, d3), where cn(di, dj) is the number of neighbors

between i and j.

In Fig. 4.10 we zoomed a region of Fig. 4.9 to spot the links of a large Italian

content provider. Although our approach is based uniquely on the domains degree

with no knowledge of the nature of information hosted by domains web sites, our

algorithm has been able to place on the same cluster additional domains of domes-

tic ISPs and Internet content providers. The same behaviour can be found on the

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 89

Fig. 4.10. Common-Neighbors Maximum Spanning Tree around a Large Italian Content
Provider (virgilio.it)

additional clusters of the Fig. 4.9. According to our knowledge, domain clustering

happens when:

• Domains have economical relationships. For instance domains such as fiat.it,

alfaromeo.it and abarth.it belong to the same cluster as their web sites con-

tain cross links to all these domains that belong to the Fiat group.

• Domains are similar in content and nature as shown in Fig. 4.10.

• Domains have some “side relationships”. For instance amazon.it has several

edges in common with peer-to-peer and torrent tracker sites. This is because

such sites use Amazon to show multimedia artwork of shared files, or perhaps

people first search on Amazon the stuff they are interested in, and the access

such sites for (illegally) downloading it.

90 4.2. NETWORK MODELS OF THE INTERNET DNS TRAFFIC

Misbehaving Resolvers

We use a combined approach.

• The modeling methodologes take TTL into account. For each tuple <resolver,

queried domain, TTL query response> we should not observe at each moni-

toring point a query more frequent than the TTL specified. If this property is not

respected, then the resolver is likely to use a faulty software or to be a scanner.

In both cases it is worth to be analysed more in detail (see Sect. 4.2.6).

• For each resolver we keep the ratio of positive versus negative replies, and we

group it according to the autonomous system (AS) such resolver belongs to. This

is in order to also take into account other resolvers (e.g. secondary DNSs) be-

longing to the same administrative domain. If the ratio exceeds a certain threshold

we mark this activity as suspicious. In fact, in case of negative DNS replies (e.g.

NXDOMAIN), the resolver must also cache these responses and avoid repeat-

ing negative queries similar to what happens with positive replies. Furthermore

high negative responses ratio, often identify scanners attempting to guess the

registered domain names, given that such list is not publicly available.

Rank Domains According to Traffic Type

Tab. 4.5 shows different types of ranking based on the nature of traffic. As previously

explained, data caching in DNS prevent us from analysing data at a granularity lower

than a day, and thus just compute a daily ranking. Nevertheless, this does not prevent

us from periodically accounting the number of observed domain queries. This has

enabled us to:

• Highlight periodicity in traffic, such as identify domains that are mostly accessed

during the day including webmail portals and (many but not all) news sites written

in Italian.

• Spot hosts used for activities that happen during the whole day such as torrent

tracker sites.

• Highlight hosts that receive very periodic contacts from specific resolvers, that

might be due to remote monitoring activities.

CH. 4. NETWORK-BASED METHODOLOGIES FOR THE INTERNET 91

Identify Email Spam and Attacks

We use the GMX bipartite graph described in Sect. 4.2.3 for focusing on email traf-

fic. Currently, we are able to use this information for emitting alerts only if the daily

degree of domains changes suddenly with respect to previous days. As future work

we plan to characterize domains, and thus create a more advanced alerting system.

For instance domains of ISPs or large institutions can have a higher alert threshold

than domains of smaller institutions. The ratio between GMX and GALL can also be

used to spot sites that mostly perform mail activity, and also that might be worth to

further investigation.

In summary, the DNS traffic model we have defined has enabled us to reach our

project goals. Currently, we are currently evaluating additional methods for assigning

scores to domains and resolvers, in order to create additional rankings.

4.2.6 Future Work Items

The described contributions are a good starting point for several follow up activities,

including:

• Relationships highlighting in web traffic via common-neighbors graphs models

of DNS traffic. For instance the number of resolvers in common between two

domains can be used to:

– Evaluate the effectiveness of advertisements (e.g. restricted to web traffic,

counting the number of resolvers in common between X.it and companyname.it

allows to figure out on which web sites companyname.it places its advertise-

ments).

– Understand the chain of interests of people (e.g. Internet users who access

news site X will likely also access news site Y).

• RTT minimization. In order to have an efficient DNS infrastructure, the goal is to

minimize the RTT for resolvers. Using our models, we can start optimizing traffic

routing so top scoring resolvers can be reached by .it name servers with a low

TTL thus resulting on a more efficient service.

• Misbehaving resolver identification. Refinement of the algorithm used to identify

resolvers that do not obey to the TTL, so that we can distinguish between misbe-

92 4.2. NETWORK MODELS OF THE INTERNET DNS TRAFFIC

having or misconfigured resolvers worth to track as they may conduct malicious

activities [190], and resolvers running malfunctioning DNS implementations that

instead should not be taken into account.

4.2.7 Conclusion

Original contributions presented in this section are novel methodologies for modeling

DNS traffic by means of graphs. During the validation on the “.it” ccTLD authoritative

name servers, we found that DNS resolvers degrees are highly-skewed and obey

power laws. This fact also holds for Internet domains when considering all traffic or

just a portion of it such as web or email. These findings give new insight into the

scale-free nature of the DNS system, where a few resolvers and a few domains are

responsible for most of the DNS activity.

Other original contributions are novel methodologies for ranking Internet domains

using DNS traffic. The main advantage of our approaches is that the monitored traffic

to be used for creating rankings is very limited with respect to other protocols such as

HTTP or social networks analysis. The validation phase has demonstrated that us-

ing the proposed methodologies enable to: successfully rank resolvers and Internet

domains according to different criteria; automatically cluster domains containing sim-

ilar information and interests; and discover malicious activities using the DNS traffic

otherwise difficult to identify by other means.

5

Conclusions and Future Directions

Recently, networks have become fundamental tools to study real-world systems.

Their unique ability to model complex relationships has enabled knowledge extrac-

tion from modern systems such as financial markets [25] [141], technological infras-

tructures [179] [21] and societies, to name a few key examples. Efficient network

algorithms are necessary to extract new knowledge, especially from large-scale sys-

tems that are available today, in the era of big-data. Among them, community detec-

tion algorithms are largely used and widely acknowledged as being essential to gain

new insights into the structure and function of systems [59, 108, 156, 158, 164, 166,

20, 110, 112]. Community detection algorithms are the first main area of focus of this

thesis. The second area is the application of networks to the study of the Internet,

one of the most prominent modern technological systems. Being able to understand,

develop and protect it is of fundamental importance and has many direct worldwide

implications [105, 104, 179, 21, 105, 159, 150].

Our findings and original contributions are presented below. For the sake of clar-

ity, network research areas of focus are discussed separately.

5.1 Parallel Network Community Detection Algorithms

As eluded to above, the fist area of focus of this thesis has been the development of

network algorithms, allowing researchers to study the underlying clustered structure

of networks. We have focused on k-clique community detection algorithms, since

cliques are responsible for the structural properties of networks [74]. Existing algo-

94 5.1. PARALLEL NETWORK COMMUNITY DETECTION

rithms for k-clique community detection are extremely demanding in terms of com-

putational resources. However, to the best of our knowledge, no formal worst-case

analyses have been conducted, leaving the existence of bottlenecks and scalability

issues unexplored. In this thesis we carry out a theoretical worst-case complexity

analysis of existing k-clique community detection algorithms, highlighting their scal-

ability issues. We analytically demonstrate that worst-case space and time complex-

ities have a quadratic dependence on the number of maximal cliques in the network.

Then, we develop algorithms and parallel algorithms that dramatically reduce the

aforementioned bounds on complexity. Specifically, we:

• Reduce worst-case space complexity from a quadratic to a linear dependence on

the number of maximal cliques in the network.

• Reduce worst-case time complexity that becomes inversely proportional to the

number of processing units available for the computation.

In order to lessen space complexity, we design an innovative algorithm to obtain the

connected components of networks. This algorithm enables large-scale networks to

be decomposed into an arbitrary number of smaller subnetworks, without any con-

straint on their structure. The connected components of the initial, non-decomposed,

network are obtained using only the connected components of the subnetworks. The

correctness of the algorithm is demonstrated in a theorem. Time complexity is al-

leviated by opportunely balancing the workload on the processing units available.

Operations are finely distributed among the units available before starting the com-

putation, thus avoiding runtime load balance overheads.

Extensive experiments have been carried out to study the algorithms proposed, to

validate them against theoretical worst-case bounds, and to compare them with other

community detection methods. Experimental results have demonstrated that:

• Existing k-clique community detection algorithms fail to mine communities from

networks larger than a handful of nodes.

• Contributed algorithms have enabled k-clique communities to be detected from

networks of a scale never reached before, even on commodity hardware.

• Proposed algorithms are typically at least one order of magnitude faster than

other state-of-the-art k-clique community detection methods.

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 95

• The amount of resources demanded by our algorithms is dramatically reduced.

For example, we have measured a runtime memory footprint reduction of more

than 30 GB on the same network.

• Algorithms performances are almost ideal on parallel architectures. Indeed, we

have measured a linear speedup, i.e., algorithms halve their execution time when

the number of processing units is doubled.

5.2 Network-Based Methodologies to Study the Internet

The second main area of this work has been on the application of networks to the

study of the Internet, one of the most prominent modern technological systems. We

have studied the Internet from two alternative perspectives, namely from:

• The level of abstraction of Autonomous Systems (ASes), to shed light into the

hidden factors underlying complex, business-driven interconnections that enable

the Internet to be a worldwide pervasive infrastructure. Stock market data has

been used in this study as well, to leverage on the twofold nature of Internet

operators that, on the one hand, are physical collections of electronic devices

and, on the other hand, are large revenue-generating companies.

• The Domain Name System (DNS), to identify malfunctions and malicious activi-

ties, as well as to rank Internet domains and uncover patterns and trends in users’

interests. New insights into the DNS have been gained by means of a large-scale

analysis and validation, that includes data of the whole set of “.it” domains, of

which, at the time of writing, there are more that 2.5 million.

Internet Companies, ASes, and Stock Markets

To study the Internet from this perspective, we have designed a novel general

methodology to investigate cross correlations in evolving networks. Patterns and

similarities in the dynamics of network nodes connectivity can be identified using

the proposed methodology.

We have found that groups of Internet companies homogeneous with reference

to their service offering – e.g. transit providers – are positively correlated in the stock

96 5.2. NETWORK-BASED METHODOLOGIES FOR THE INTERNET

market. Similarly, we have found that even geographically close companies are posi-

tively correlated, suggesting the existence of common economic factors driving geo-

graphically homogeneous companies. We have also given empirical evidence on the

existence of factors, common to all companies, which result in collective evolution-

ary behaviours in the Internet connectivity. Finally, we have also shown that factors

governing stock price variations are not the same as those synchronously driving the

variations of the Internet connectivity.

The proposed methodology to identify cross correlations is general enough to

be applied to any kind of network. At the present time, we are using the presented

methodology to study financial [16] as well as climate networks [73]. We are also ex-

tending our investigations to include the Random Matrix Theory [50]. We believe this

will provide stronger support to the existence of collective behaviours in the evolution

of networks. Similarly, it will provide a rigorous mathematical tool to filter out noise

from genuine correlations.

The Domain Name System (DNS)

To study the Internet from this standpoint, we have designed and validated network-

based models of DNS traffic. The DNS is one of the core protocols on which the

Internet is built upon. Hidden behind higher-level protocols such as email and web, it

carries valuable information that we have exploited, for example, to identify malicious

activities and to understand trends and preferences of the Internet community.

We have investigated the structural properties of DNS traffic networks. We have

rigorously verified that the DNS ecosystem is scale-free [12], with a handful of do-

mains responsible for a large part of user activities. We have also obtained mean-

ingful rankings of Internet domains, using very limited amounts of traffic. With our

approaches, we have been able to automatically cluster domains containing similar

information and interests. We have given empirical evidence that the sole informa-

tion contained in the DNS traffic, if opportunely modeled into networks, is enough to

cluster together similar sites – e.g., content providers, banking and finance, and au-

tomotive. Similarly, we have discovered malicious activities, which otherwise would

have been difficult to identify.

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 97

As future works, we are planning to use the DNS traffic to evaluate the effective-

ness of advertisements. This can be accomplished by monitoring the DNS queries

that originate from a given source. Similarly, we are planning to refine the identifica-

tion of malicious activities that may lead to failures in the DNS.

A

Proofs of Our Theorems

A.1 Proof of Correctness of the Connected Components Merging

Algorithm CONNECT_ME

Theorem 1. If F1 and F2 are collections of sets corresponding to the connected com-

ponents of graphsH1 = (V1, E1) andH2 = (V2, E2), V2 ⊆ V1, thenCONNECT_ME(F1, F2)

ensures F1 contains sets corresponding to the connected components of H1 ∪H2.

Proof. Since findF2
(u) in line 3 returns the canonical element U of the set in F2

containing u, a path between U and u always exists in H2 because F2 contains

disjoint sets corresponding to the connected components of H2.

Therefore, except for the trivial case when U = u, it must be ensured that U and

u are in the same disjoint set in F1 because the existence of the path between U and

u in H2 implies the existence of the same path in H2 ∪ H1. This is guaranteed by

MERGE_SETS in line 5 which finds in F1 two sets containing U and u respectively,

and joins them if they were not already the same. The only paths that can exist in H2

and which are not generated in line 3, are those involving nodes p and q in the same

connected component, for which findF (p) = findF (q) = U with U 6= p 6= q. In any

case, after line 5, U and p are in the same set when u = p as well as U and q when

u = q. Indeed, if the loop in line 2 executes first with u = p and then with u = q, a set,

already containing U and p, is joined with another set containing q. Similarly, if u = q

precedes u = p in the loop, a set, already containing U and q, is joined with another

set containing p. Hence, after the loop has executed with u = p and u = q, both p

100 A.2. A PARALLEL ALGORITHM

and q are in the same set. Therefore, for each couple of nodes p, q, if there exists a

path between them in H2, they end up in the same set in F1.

If instead there exists a path between them in H1, since they were in the same set

of the initial collection and only union operations are performed by MERGE_SETS,

they continue to be in the same set after the loop has executed.

Finally, p and q are in the same set in F1 also if there not exists a path between

them neither in H2 nor in H1 but there exists in H1 ∪ H2. Suppose, by contradic-

tion, that they are in two different sets in F1 after CONNECT_ME has executed.

This implies they were in different sets at the beginning and hence in two different

connected components in H1. This implies also that all the paths of H2 together are

not enough to allow the creation of a new path between them, otherwise two disjoint

sets containing p and q, respectively, would have been joined by MERGE_SETS.

Therefore, since the path does not exist in H1 and all the all paths in H2 do not

permit the creation of a path between them, p and q, are in two separate connected

components in H1 ∪H2.

A.2 A Parallel Algorithm to Detect k-Clique Communities

A.2.1 Proof of Worst-Case Time Complexity

Theorem 2. If operations on collections of disjoint sets are in O(1), perfect load

balancing is achieved and overlap is calculated through binary searches, then

COSpoc(c0, · · · , cl−1) worst-case time complexity is in:

O

(
l2

p
kmaxlog2kmax

)
. (A.1)

Proof. Total worst-case time complexity is sum of the following:

• Tin required to initialize collections of disjoint sets.

• Tp,ov required to compute the overlap between pairs of maximal cliques.

• Tp,ds required to operate on collections of disjoint sets.

• Tjo required to merge partial results.

APPENDIX A. PROOFS OF OUR THEOREMS 101

Tin ∈ O(l · kmax) since each processor initializes in parallel (kmax− 1) collections

of disjoint sets with at most l elements.

Tp,ov ∈ O((1/p) · l2kmaxlog2kmax). The overlap is calculated through binary

searches, which areO(log2k) on k elements. In the worst-case where all the maximal

cliques are kmax in size, kmax binary searches are required for each of the
(
l
2

)
∈ O(l2)

possible pairs of maximal cliques. Therefore the total cost is in O(l2kmaxlog2kmax).

This total cost can be divided by p due to the perfect load balancing, obtaining the

bound specified for Tp,ov.

Tp,ds ∈ O((1/p) · l2kmax). In the worst-case where all the maximal cliques are

kmax in size and have (kmax − 1) nodes in common with each other maximal clique,

MERGE_SETS is called (kmax − 1) times for each of the possible
(
l
2

)
∈ O(l2) pairs

of maximal cliques. Therefore the total cost is in O(l2kmax) since operations on col-

lections of disjoint sets are in O(1).

Tjo ∈ O(p · l · kmax). CONNECT_ME processes at most l elements each time is

called. Hence its cost is in O(l), because operations on collections of disjoint sets are

in O(1). The bound specified for Tjo is obtained by observing that CONNECT_ME is

called (p− 1) times for each k ∈ [2, kmax].

Only Tp,ov and Tp,ds have a quadratic dependence on l and their sum is in

O((1/p) · l2kmax(log2kmax + 1)). The (A.1) is derived from the latter sum by disre-

garding the constant 1.

A.2.2 Proof of Worst-Case Space Complexity

Theorem 3. COSpoc(c0, · · · , cl−1) worst-case space complexity is in:

O(p · l · kmax).

Proof. Each of the p processors has (kmax − 1) collections Fq,2, Fq,3, ..., Fq,kmax and

each collection Fq,k has at most l elements.

102 A.3. A PARALLEL ALGORITHM (ON STEROIDS)

A.3 A Parallel Algorithm to Detect k-Clique Communities (on

Steroids)

A.3.1 Proof of Worst-Case Time Complexity

Theorem 4. With conditions as in Theorem 2, if the overall complexity of SLIDE,

READ, WRITE, Fq initialization and CONNECT_ME is in (A.1), thenCOS(c0, · · · , cl−1)

worst-case time complexity is in (A.1).

Proof. If SLIDE, READ, WRITE, Fq initialization and CONNECT_ME overall wost-

case time complexity is in (A.1), the proof is mutatis mutandis the same as that of

Theorem 2.

A.3.2 Proof of Worst-Case Space Complexity

Theorem 5. COS(c0, · · · , cl−1) worst-case space complexity is in:

O (l · (p+ kmax) +W) .

Proof. Each processor has a collection Fq with size l. Hence the total memory used

by p processors is p · l. As regards global collections Fglobal,k, their the total size

reaches its maximum l · (kmax − 1) in a worst-case scenario where all the maximal

cliques are kmax in size. Therefore, total space for collections of disjoint sets is in

O (l · (p+ kmax)). The O(W) is for the sliding window.

REFERENCES 103

References

[1] J. M. Agosta et al. “Mixture Models of Endhost Network Traffic”. In: ArXiv

e-prints (2012).

[2] R. Albert, H. Jeong, and A.L. Barabási. “Error and attack tolerance of complex

networks”. In: Nature 406.6794 (2000).

[3] Paul Albitz and Cricket Liu. DNS and Bind, 4th Edition. 4th ed. O’Reilly, 2001.

ISBN: 0-596-00158-4.

[4] Nikolaos Alexiou et al. “Formal analysis of the kaminsky DNS cache-poisoning

attack using probabilistic model checking”. In: High-Assurance Systems En-

gineering (HASE), 2010 IEEE 12th International Symposium on. IEEE. 2010,

pp. 94–103.

[5] M. Allalouf, E. Kaplan, and Y. Shavitt. “On the feasibility of a large scale dis-

tributed testbed for measuring quality of path characteristics in the Internet”.

In: Testbeds and Research Infrastructures for the Development of Networks

& Communities and Workshops, 2009. TridentCom 2009. 5th International

Conference on. 2009.

[6] Franklin Allen and Ana Babus. “Networks in finance”. In: Wharton Financial

Institutions Center Working Paper (2008).

[7] J Ignacio Alvarez-Hamelin et al. “Large scale networks fingerprinting and vi-

sualization using the k-core decomposition”. In: Advances in neural informa-

tion processing systems. 2005, pp. 41–50.

[8] Hussein A Alzoubi et al. “Anycast cdns revisited”. In: Proceedings of the 17th

international conference on World Wide Web. ACM. 2008, pp. 277–286.

[9] M. Antonakakis et al. “Building a Dynamic Reputation System for DNS”. In:

9th Usenix Security Symposium (2010).

[10] Hitesh Ballani and Paul Francis. “Mitigating DNS dos attacks”. In: Proceed-

ings of the 15th ACM conference on Computer and communications security.

ACM. 2008, pp. 189–198.

[11] Hitesh Ballani, Paul Francis, and Xinyang Zhang. “A study of prefix hijacking

and interception in the Internet”. In: ACM SIGCOMM Computer Communica-

tion Review. Vol. 37. 4. ACM. 2007, pp. 265–276.

104 REFERENCES

[12] Albert-László Barabási and Réka Albert. “Emergence of scaling in random

networks”. In: science 286.5439 (1999), pp. 509–512.

[13] V. Barnett and T. Lewis. “Outliers in statistical data”. In: Wiley Series in Prob-

ability and Mathematical Statistics. Applied Probability and Statistics, Chich-

ester: Wiley, 1984, 2nd ed. 1 (1984).

[14] Vladimir Batagelj and Andrej Mrvar. Pajek datasets. http://vlado.fmf.uni-

lj.si/pub/networks/data/.

[15] Vladimir Batagelj and Matjaz Zaversnik. “An O(m) Algorithm for Cores De-

composition of Networks”. In: CoRR cs.DS/0310049 (2003).

[16] Stefano Battiston et al. “The structure of financial networks”. In: Network Sci-

ence. Springer, 2010, pp. 131–163.

[17] Andreas Berger and Eduard Natale. “Assessing the real-world dynamics of

DNS”. In: Proceedings of the 4th international conference on Traffic Monitor-

ing and Analysis. TMA’12. Berlin, Heidelberg: Springer-Verlag, 2012.

[18] Sun Bin, Wen Qiaoyan, and Liang Xiaoying. “A DNS based anti-phishing ap-

proach”. In: Networks Security Wireless Communications and Trusted Com-

puting (NSWCTC), 2010 Second International Conference on. Vol. 2. IEEE.

2010, pp. 262–265.

[19] Vincent D Blondel et al. Fast unfolding of communities in large networks. URL:

https://sites.google.com/site/findcommunities/.

[20] Vincent D Blondel et al. “Fast unfolding of communities in large networks”. In:

Journal of Statistical Mechanics: Theory and Experiment 2008.10 (2008).

[21] Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov. “Sustaining

the internet with hyperbolic mapping”. In: Nature Communications 1 (2010),

p. 62.

[22] Immanuel M. Bomze et al. “The Maximum Clique Problem”. In: Handbook of

Combinatorial Optimization. Kluwer Academic Publishers, 1999, pp. 1–74.

[23] Phillip Bonacich. “Power and Centrality: A Family of Measures”. In: American

Journal of Sociology 92.5 (1987).

[24] Phillip Bonacich. “Some unique properties of eigenvector centrality”. In: So-

cial Networks 29.4 (2007), pp. 555–564.

http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://sites.google.com/site/findcommunities/

REFERENCES 105

[25] Giovanni Bonanno et al. “Networks of equities in financial markets”. In: The

European Physical Journal B-Condensed Matter and Complex Systems 38.2

(2004), pp. 363–371.

[26] Giovanni Bonanno et al. “Topology of correlation-based minimal spanning

trees in real and model markets”. In: Physical Review E 68.4 (2003).

[27] Stephen P Borgatti. “Centrality and network flow”. In: Social networks 27.1

(2005), pp. 55–71.

[28] S. Brin and L. Page. “The Anatomy of a Large-Scale Hypertextual Web

Search Engine”. In: Seventh International World-Wide Web Conference. 1998.

[29] Coen Bron and Joep Kerbosch. “Algorithm 457: finding all cliques of an undi-

rected graph”. In: Commun. ACM 16.9 (1973), pp. 575–577. ISSN: 0001-

0782.

[30] N. Brownlee and K.C. Claffy. “Understanding Internet traffic streams: dragon-

flies and tortoises”. In: Communications Magazine, IEEE 40.10 (2002).

[31] Dongbo Bu et al. “Topological structure analysis of the protein-protein inter-

action network in budding yeast”. In: Nucl. Acids Res. 31.9 (2003).

[32] Charles W Calomiris. “The subprime turmoil: What’s old, what’s new, and

what’s next”. In: Maintaining Stability in a Changing Financial System (2008),

pp. 21–23.

[33] Emiliano Casalicchio and Igor Nai Favino. The 1st Workshop on DNS Health

and Security. 2012. URL: http://www.gcsec.org/sites/default/files/

files/dnseasy2011.pdf.

[34] Shu-Yan Chan, Pan Hui, and Kuang Xu. “Community detection of time-

varying mobile social networks”. In: Complex Sciences. Springer, 2009,

pp. 1154–1159.

[35] Nikolaos Chatzis et al. “On the importance of Internet eXchange Points for

today’s Internet ecosystem”. In: arXiv preprint arXiv:1307.5264 (2013).

[36] Chang-Sheng Chen, Shian-Shyong Tseng, and Chien-Liang Liu. “A unify-

ing framework for intelligent DNS management”. In: International Journal of

Human-Computer Studies 58.4 (2003).

http://www.gcsec.org/sites/default/files/files/dnseasy2011.pdf
http://www.gcsec.org/sites/default/files/files/dnseasy2011.pdf

106 REFERENCES

[37] K. Chen et al. “Where the sidewalk ends: Extending the Internet AS graph

using traceroutes from P2P users”. In: Proceedings of the 5th international

conference on Emerging networking experiments and technologies. 2009.

[38] P Chen and S Redner. “Community Structure of the Physical Review Citation

Network”. In: Journal of Informetrics 4.3 (2009).

[39] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. “Power-Law

Distributions in Empirical Data”. In: SIAM Rev. 51.4 (Nov. 2009).

[40] R. Cohen and D. Raz. “The Internet dark matter-on the missing links in the

AS connectivity map”. In: Proc. IEEE Infocom. Vol. 6. 2006.

[41] Gibson Research Corporation. Domain Name Speed Benchmark. 2012. URL:

https://www.grc.com/dns/benchmark.htm.

[42] Gabor Csardi and Tamas Nepusz. The igraph software package for complex

network research. http://igraph.sf.net.

[43] Alberto Dainotti et al. “Analysis of country-wide internet outages caused by

censorship”. In: Proceedings of the 2011 ACM SIGCOMM conference on In-

ternet measurement conference. ACM. 2011, pp. 1–18.

[44] OrientDB Graph-Document NoSQL dbms. URL: http://www.orientdb.org/.

[45] James Demmel et al. Templates for the solution of algebraic eigenvalue prob-

lems: a practical guide. Ed. by Zhaojun Bai. Philadelphia, PA, USA: Society

for Industrial and Applied Mathematics, 2000.

[46] L. Deri et al. “Unveiling Interests and Trends Using the DNS”. In: IADIS Con-

ference on Internet Technologies. 2012.

[47] Xenofontas Dimitropoulos et al. “AS relationships: Inference and validation”.

In: ACM SIGCOMM Computer Communication Review 37.1 (2007), pp. 29–

40.

[48] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks: From Biological

Nets to the Internet and WWW. New York, NY, USA: Oxford University Press,

2003.

[49] Nan Du et al. “A Parallel Algorithm for Enumerating All Maximal Cliques in

Complex Network”. In: (2006), pp. 320 –324.

[50] Alan Edelman and N Raj Rao. “Random matrix theory”. In: Acta Numerica

14.1 (2005), pp. 233–297.

https://www.grc.com/dns/benchmark.htm
http://igraph.sf.net
http://www.orientdb.org/

REFERENCES 107

[51] David Eppstein, Zvi Galil, and Giuseppe F. Italiano. “Dynamic Graph Algo-

rithms”. In: Algorithms and Theory of Computation Handbook. Ed. by Mikhail

J. Atallah and Susan Fox. 1st. CRC Press, Inc., 1998.

[52] Martin G Everett and Stephen P Borgatti. “Analyzing Clique Overlap”. In: Con-

nections 21.1 (1998), pp. 49–61.

[53] Facebook. URL: http://www.facebook.com/.

[54] The Measurement Factory. dnstop and dsc tools. 2006. URL: http://dns.

measurement-factory.com/tools/.

[55] A. Faggiani et al. “On the Feasibility of Measuring the Internet Through

Smartphone-based Crowdsourcing”. In: International Workshop on Wireless

Network Measurements (WinMee). 2012.

[56] M. Faloutsos, P. Faloutsos, and C. Faloutsos. “On power-law relationships

of the internet topology”. In: ACM SIGCOMM Computer Communication Re-

view. Vol. 29. 4. 1999.

[57] M. Feily, A. Shahrestani, and S. Ramadass. “A Survey of Botnet and Botnet

Detection”. In: Emerging Security Information, Systems and Technologies,

2009. SECURWARE ’09. Third International Conference on. 2009.

[58] Dima Feldman and Yuval Shavitt. “Automatic large scale generation of inter-

net pop level maps”. In: Global Telecommunications Conference, 2008. IEEE

GLOBECOM 2008. IEEE. IEEE. 2008, pp. 1–6.

[59] Santo Fortunato. “Community detection in graphs”. In: Physics Reports 486.3

(2010), pp. 75–174.

[60] Santo Fortunato. “Community detection in graphs”. In: Physics Reports 486.3

- 5 (2010), pp. 75–174.

[61] Francesco Fusco and Luca Deri. “High speed network traffic analysis with

commodity multi-core systems”. In: Proceedings of the 10th ACM SIGCOMM

conference on Internet measurement. IMC ’10. New York, NY, USA: ACM,

2010.

[62] Michelle Girvan and M.E.J. Newman. “Community structure in social and bi-

ological networks”. In: PNAS 99.12 (2002).

[63] Google Zeitgeist 2012. Tech. rep. Google Inc, 2012.

http://www.facebook.com/
http://dns.measurement-factory.com/tools/
http://dns.measurement-factory.com/tools/

108 REFERENCES

[64] J.C. Gower and GJS Ross. “Minimum spanning trees and single linkage clus-

ter analysis”. In: Applied statistics (1969).

[65] E. Gregori, L. Lenzini, and C. Orsini. “k-dense Communities in the Inter-

net AS-Level Topology”. In: Communication Systems and Networks (COM-

SNETS), 2011 Third International Conference on. 2011.

[66] Enrico Gregori, Luciano Lenzini, and Simone Mainardi. Parallel k-Clique

Community Detection on Large-Scale Networks. http : / / cosparallel .

sourceforge.net/.

[67] Enrico Gregori, Luciano Lenzini, and Chiara Orsini. k-clique Communities in

the Internet AS-level Topology Graph. Tech. rep. 2010. URL: http://puma.

isti.cnr.it/.

[68] Enrico Gregori, Luciano Lenzini, and Chiara Orsini. “k-clique Communities in

the Internet AS-Level Topology Graph”. In: SIMPLEX. Minneapolis, MN, USA,

2011.

[69] Enrico Gregori et al. “BGP and inter-AS economic relationships”. In: NET-

WORKING 2011. Springer, 2011, pp. 54–67.

[70] Enrico Gregori et al. “FLIP-CPM: A Parallel Community Detection Method”.

In: ISCIS. 2011, pp. 249–255.

[71] Enrico Gregori et al. “The impact of IXPs on the AS-level topology structure

of the Internet”. In: Computer Communications 34.1 (2011), pp. 68 –82.

[72] Peter D. Grnwald, In Jae Myung, and Mark A. Pitt. Advances in Minimum De-

scription Length: Theory and Applications (Neural Information Processing).

The MIT Press, 2005. ISBN: 0262072629.

[73] Oded Guez et al. “Global climate network evolves with North Atlantic Oscil-

lation phases: Coupling to Southern Pacific Ocean”. In: EPL (Europhysics

Letters) 103.6 (2013).

[74] Jean-Loup Guillaume and Matthieu Latapy. “Bipartite graphs as models of

complex networks”. In: Physica A: Statistical Mechanics and its Applications

371.2 (2006), pp. 795 –813.

[75] A. Holmes et al. “Domain Traffic Ranking”. European Patent 2012/EP241753.

2012.

http://cosparallel.sourceforge.net/
http://cosparallel.sourceforge.net/
http://puma.isti.cnr.it/
http://puma.isti.cnr.it/

REFERENCES 109

[76] A. Holmes et al. “Existent Domain Name DNS Traffic Capture and Analysis”.

US Patent 2010/0257266. 2010.

[77] Sungpack Hong et al. “Accelerating CUDA graph algorithms at maximum

warp”. In: Proceedings of the 16th ACM symposium on Principles and prac-

tice of parallel programming. ACM. 2011, pp. 267–276.

[78] Bruce Hoppe and Claire Reinelt. “Social network analysis and the evaluation

of leadership networks”. In: The Leadership Quarterly 21.4 (2010), pp. 600–

619.

[79] Chengchen Hu et al. “Evaluating potential routing diversity for internet failure

recovery”. In: INFOCOM, 2010 Proceedings IEEE. IEEE. 2010, pp. 1–5.

[80] Cheng Huang et al. “Public DNS system and Global Traffic Management”. In:

INFOCOM, 2011 Proceedings IEEE. 2011.

[81] Pan Hui and Jon Crowcroft. “Human mobility models and opportunistic com-

munications system design”. In: Philosophical Transactions of the Royal So-

ciety A: Mathematical, Physical and Engineering Sciences 366.1872 (2008),

pp. 2005–2016.

[82] Pan Hui, Jon Crowcroft, and Eiko Yoneki. “Bubble rap: social-based forward-

ing in delay tolerant networks”. In: Proceedings of the 9th ACM international

symposium on Mobile ad hoc networking and computing. 2008, pp. 241–250.

[83] Pan Hui et al. “Distributed community detection in delay tolerant networks”.

In: Proceedings of 2nd ACM/IEEE international workshop on Mobility in the

evolving internet architecture. 2007.

[84] ICANN. Root server attack on 6 February 2007. Tech. rep. 2007.

[85] Joshua Introne and Sean Goggins. “Tracing Knowledge Evolution in Online

Forums”. In: ACM Web Science Conference: Words and Networks Workshop.

2012.

[86] Joshua E Introne and Marcus Drescher. “Analyzing the flow of knowledge

in computer mediated teams”. In: Proceedings of the 2013 conference on

Computer supported cooperative work. ACM. 2013, pp. 341–356.

[87] J. Abley and K.Lindqvist. “Operation of Anycast Services”. In: Internet RFC

4786 (2006).

110 REFERENCES

[88] Adam Jacobs. “The pathologies of big data”. In: Communications of the ACM

52.8 (2009), pp. 36–44.

[89] Divya James and Mintu Philip. “A Novel Anti phishing framework based on

visual cryptography”. In: Power, Signals, Controls and Computation (EPSCI-

CON), 2012 International Conference on. IEEE. 2012, pp. 1–5.

[90] Vitor Jesus, Rui L Aguiar, and Peter Steenkiste. “Topological Implications of

Cascading Interdomain Bilateral Traffic Agreements”. In: Selected Areas in

Communications, IEEE Journal on 29.9 (2011), pp. 1848–1862.

[91] B Jones. Computational Geometry Database. ftp://ftp.cs.usask.ca/

pub/geometry/.

[92] Jaeyeon Jung et al. “DNS performance and the effectiveness of caching”. In:

Networking, IEEE/ACM Transactions on 10.5 (2002).

[93] S. Kamvar et al. Exploiting the block structure of the web for computing

PageRank. Tech. rep. Stanford University, 2003.

[94] Anuj Karnik et al. “A Fragile Internet: Non-Technical Issues Leading to Inter-

net Blackouts”. In: Capstone paper submitted for the degree of Masters in

Interdisciplinary Telecommunications at the University of Colorado (2011).

[95] David Kempe, Jon Kleinberg, and Éva Tardos. “Maximizing the spread of in-

fluence through a social network”. In: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining. ACM.

2003, pp. 137–146.

[96] Maksim Kitsak et al. “Identification of influential spreaders in complex net-

works”. In: Nature Physics 6.11 (2010), pp. 888–893.

[97] Jon M. Kleinberg. “Authoritative sources in a hyperlinked environment”. In: J.

ACM 46 (5 1999), pp. 604–632.

[98] Balachander Krishnamurthy, Walter Willinger, and Brice Augustin. Reverse

Engineering Peering At Internet Exchange Points. US Patent App. 13/873,316.

2013.

[99] Balachander Krishnamurthy et al. “A Socratic method for validation of measurement-

based networking research”. In: Comput. Commun. 34.1 (2011).

ftp://ftp.cs.usask.ca/pub/geometry/
ftp://ftp.cs.usask.ca/pub/geometry/

REFERENCES 111

[100] L Kullmann, J Kertesz, and RN Mantegna. “Identification of clusters of com-

panies in stock indices via Potts super-paramagnetic transitions”. In: Physica

A: Statistical Mechanics and its Applications 287.3 (2000), pp. 412–419.

[101] Ravi Kumar et al. “Trawling the Web for emerging cyber-communities”. In:

Computer Networks 31.11-16 (1999), pp. 1481 –1493.

[102] Jussi M. Kumpula et al. “Sequential algorithm for fast clique percolation”. In:

Phys. Rev. E 78.2 (2008).

[103] Haewoon Kwak et al. “What is Twitter, a social network or a news media?” In:

Proceedings of the 19th international conference on World wide web. ACM.

2010, pp. 591–600.

[104] Mohit Lad et al. “PHAS: A prefix hijack alert system”. In: Proc. USENIX Se-

curity Symposium. Vol. 2. 2006, pp. 153–166.

[105] Mohit Lad et al. “Understanding resiliency of internet topology against prefix

hijack attacks”. In: Dependable Systems and Networks, 2007. DSN’07. 37th

Annual IEEE/IFIP International Conference on. IEEE. 2007, pp. 368–377.

[106] Andrea Lancichinetti and Santo Fortunato. “Community detection algorithms:

A comparative analysis”. In: Phys. Rev. E 80 (5 2009).

[107] Andrea Lancichinetti, Santo Fortunato, and János Kertész. “Detecting the

overlapping and hierarchical community structure in complex networks”. In:

New Journal of Physics 11.3 (2009).

[108] Andrea Lancichinetti et al. “Characterizing the community structure of com-

plex networks”. In: PloS one 5.8 (2010).

[109] Andrea Lancichinetti et al. Finding Statistically Significant Communities in

Networks. URL: http://oslom.org/.

[110] Andrea Lancichinetti et al. “Finding Statistically Significant Communities in

Networks”. In: PLoS ONE 6.4 (2011).

[111] Conrad Lee et al. Detecting highly overlapping community structure by greedy

clique expansion. URL: https://sites.google.com/site/greedycliqueexpansion/.

[112] Conrad Lee et al. “Detecting highly overlapping community structure by

greedy clique expansion”. In: Workshop on Social Network Mining and Anal-

ysis. 2010.

http://oslom.org/
https://sites.google.com/site/greedycliqueexpansion/

112 REFERENCES

[113] Jure Leskovec. Stanford Large Network Dataset Collection. http://snap.

stanford.edu/data/.

[114] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. “The dynamics

of viral marketing”. In: ACM Trans. Web 1 (1 2007).

[115] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. “Graph evolution:

Densification and shrinking diameters”. In: ACM Trans. Knowl. Discov. Data 1

(1 2007).

[116] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. “Graphs over time:

densification laws, shrinking diameters and possible explanations”. In: Pro-

ceedings of the eleventh ACM SIGKDD international conference on Knowl-

edge discovery in data mining. 2005, pp. 177–187.

[117] Kevin Lewis et al. “Tastes, ties, and time: A new social network dataset using

Facebook. com”. In: Social networks 30.4 (2008), pp. 330–342.

[118] Lun Li et al. “A first-principles approach to understanding the internet’s

router-level topology”. In: ACM SIGCOMM Computer Communication Re-

view. Vol. 34. 4. ACM. 2004, pp. 3–14.

[119] David Liben-Nowell and Jon Kleinberg. “The link-prediction problem for social

networks”. In: Journal of the American society for information science and

technology 58.7 (2007), pp. 1019–1031.

[120] Cricket Liu and Paul Albitz. DNS and Bind. O’Reilly Media, Inc., 2009.

[121] A. Lodhi, A. Dhamdhere, and C. Dovrolis. “GENESIS: An agent-based model

of interdomain network formation, traffic flow and economics”. In: INFOCOM,

2012 Proceedings IEEE. 2012.

[122] Steve Lohr. “The age of big data”. In: New York Times 11 (2012).

[123] Richard TB Ma et al. “Internet Economics: The use of Shapley value for ISP

settlement”. In: IEEE/ACM Transactions on Networking (TON) 18.3 (2010),

pp. 775–787.

[124] Kamesh Madduri et al. “A faster parallel algorithm and efficient multithreaded

implementations for evaluating betweenness centrality on massive datasets”.

In: Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International

Symposium on. IEEE. 2009, pp. 1–8.

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/

REFERENCES 113

[125] P. Mahadevan et al. “Lessons from three views of the Internet topology”. In:

arXiv preprint cs/0508033 (2005).

[126] Grzegorz Malewicz et al. “Pregel: a system for large-scale graph process-

ing”. In: Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data. ACM. 2010, pp. 135–146.

[127] R.N. Mantegna and H.E. Stanley. Introduction to econophysics: correlations

and complexity in finance. Cambridge University Press, 1999.

[128] Rosario N Mantegna. “Hierarchical structure in financial markets”. In: The

European Physical Journal B-Condensed Matter and Complex Systems 11.1

(1999), pp. 193–197.

[129] Steve McCanne. Content distribution system for operation over an internet-

work including content peering arrangements. US Patent 6,785,704. 2004.

[130] Miller McPherson, Lynn Smith-Lovin, and James M Cook. “Birds of a feather:

Homophily in social networks”. In: Annual review of sociology (2001), pp. 415–

444.

[131] Elinor Mills. “Puerto Rico sites redirected in DNS attack”. In: CNET, San Fran-

cisco, California (2009).

[132] J. Moon and L. Moser. “On cliques in graphs”. In: Israel Journal of Mathemat-

ics 3 (1 1965), pp. 23–28. ISSN: 0021-2172.

[133] Neo4j. URL: http://www.neo4j.org/.

[134] M. E. J. Newman. “Analysis of weighted networks”. In: Phys. Rev. E 70 (5

2004).

[135] M. E. J. Newman. “Finding community structure in networks using the eigen-

vectors of matrices”. In: PHYS.REV.E 74 (2006).

[136] Mark EJ Newman. “Mixing patterns in networks”. In: Physical Review E 67.2

(2003), p. 026126.

[137] Mark EJ Newman. “The structure and function of complex networks”. In:

SIAM review 45.2 (2003), pp. 167–256.

[138] W.B. Norton. “The evolution of the US Internet peering ecosystem”. In:

Equinix white papers (2004).

[139] William B Norton. “Internet service providers and peering”. In: Proceedings

of NANOG. Vol. 19. 2001, pp. 1–17.

http://www.neo4j.org/

114 REFERENCES

[140] R.V. Oliveira et al. “In search of the elusive ground truth: the internet’s as-

level connectivity structure”. In: ACM SIGMETRICS Performance Evaluation

Review. Vol. 36. 1. 2008.

[141] J-P Onnela, Kimmo Kaski, and Janos Kertész. “Clustering and information

in correlation based financial networks”. In: The European Physical Journal

B-Condensed Matter and Complex Systems 38.2 (2004), pp. 353–362.

[142] J. P. Onnela et al. “Structure and tie strengths in mobile communication net-

works”. In: PNAS 104.18 (2007), pp. 7332–7336.

[143] OpenDNS Stats. Tech. rep. OpenDNS Inc, 2013.

[144] Eric Osterweil et al. “Behavior of DNS’ top talkers, a .com/.net view”. In: Pro-

ceedings of the 13th international conference on Passive and Active Mea-

surement. Berlin, Heidelberg: Springer-Verlag, 2012.

[145] John S. Otto et al. “Content delivery and the natural evolution of DNS: remote

dns trends, performance issues and alternative solutions”. In: Proceedings

of the 2012 ACM conference on Internet measurement conference. IMC ’12.

New York, NY, USA: ACM, 2012.

[146] G. Palla, A. Barabasi, and T. Vicsek. “Quantifying social group evolution”. In:

Nature 446 (Apr. 2007), pp. 664–667.

[147] Gergely Palla et al. “Social group dynamics in networks”. In: Adaptive Net-

works. Springer, 2009, pp. 11–38.

[148] Gergely Palla et al. “Uncovering the overlapping community structure of com-

plex networks in nature and society”. In: Nature 435.7043 (2005), pp. 814–

818.

[149] Gergely Palla et al. “Uncovering the overlapping community structure of com-

plex networks in nature and society - Supplementary Material”. In: Nature

435.7043 (2005), pp. 814–818.

[150] Christopher R Palmer et al. “The connectivity and fault-tolerance of the Inter-

net topology”. In: Workshop on Network-Related Data Management (NRDM).

2001.

[151] J. Park and M.E.J. Newman. “Origin of degree correlations in the Internet and

other networks”. In: Physical Review E 68.2 (2003).

REFERENCES 115

[152] R. Pastor-Satorras, A. Vázquez, and A. Vespignani. “Dynamical and correla-

tion properties of the Internet”. In: Physical review letters 87.25 (2001).

[153] Dan Pei, Lixia Zhang, and Dan Massey. “A framework for resilient Internet

routing protocols”. In: Network, IEEE 18.2 (2004), pp. 5–12.

[154] David Plonka and Paul Barford. “Context-aware clustering of DNS query traf-

fic”. In: Proceedings of the 8th ACM SIGCOMM conference on Internet mea-

surement. IMC ’08. New York, NY, USA: ACM, 2008.

[155] Alin C Popescu, Brian J Premore, and Todd Underwood. Anatomy of a leak:

AS9121. Tech. rep. NANOG, 2005.

[156] Mason A Porter, Jukka-Pekka Onnela, and Peter J Mucha. “Communities in

networks”. In: Notices of the AMS 56.9 (2009), pp. 1082–1097.

[157] Abraham P. Punnen. “A linear time algorithm for the maximum capacity path

problem”. In: European Journal of Operational Research 53.3 (1991).

[158] Filippo Radicchi et al. “Defining and identifying communities in networks”. In:

Proceedings of the National Academy of Sciences of the United States of

America 101.9 (2004), pp. 2658–2663.

[159] Smita Rai, Biswanath Mukherjee, and Omkar Deshpande. “IP resilience

within an autonomous system: Current approaches, challenges, and future

directions”. In: Communications Magazine, IEEE 43.10 (2005), pp. 142–149.

[160] R. Rammal, G. Toulouse, and M.A. Virasoro. “Ultrametricity for physicists”. In:

Reviews of Modern Physics 58.3 (1986).

[161] J. Rissanen. “Modeling by shortest data description”. In: Automatica 14.5

(1978).

[162] Ian Robinson, J Webber, and E Eifrem. Graph Databases. O’Reilly Media,

2013.

[163] Martin Rosvall and Carl T. Bergstrom. An information-theoretic framework for

resolving community structure in complex networks. URL: http://www.tp.

umu.se/~rosvall/code.html.

[164] Martin Rosvall and Carl T. Bergstrom. “An information-theoretic framework for

resolving community structure in complex networks”. In: Proceedings of the

National Academy of Sciences 104.18 (2007).

http://www.tp.umu.se/~rosvall/code.html
http://www.tp.umu.se/~rosvall/code.html

116 REFERENCES

[165] Martin Rosvall and Carl T. Bergstrom. Maps of information flow reveal com-

munity structure in complex networks. URL: http : / / www . tp . umu . se /

~rosvall/code.html.

[166] Martin Rosvall and Carl T. Bergstrom. “Maps of random walks on com-

plex networks reveal community structure”. In: Proceedings of the National

Academy of Sciences 105.4 (2008).

[167] M. Roughan et al. “10 Lessons from 10 Years of Measuring and Modeling

the Internet’s Autonomous Systems”. In: Selected Areas in Communications,

IEEE Journal on 29.9 (2011).

[168] Sercan Sadi, Sule Gündüz Ögüdücü, and A. Sima Etaner-Uyar. “An effi-

cient community detection method using parallel clique-finding ants”. In: IEEE

Congress on Evolutionary Computation. 2010, pp. 1–7.

[169] Kazumi Saito, Takeshi Yamada, and Kazuhiro Kazama. “Extracting Commu-

nities from Complex Networks by the k-Dense Method”. In: IEICE Trans. Fun-

dam. Electron. Commun. Comput. Sci. E91-A.11 (2008), pp. 3304–3311.

[170] Matthew C. Schmidt et al. “A scalable, parallel algorithm for maximal clique

enumeration”. In: J. Parallel Distrib. Comput. 69 (4 2009), pp. 417–428.

[171] Hossain Shahriar and Mohammad Zulkernine. “Information Source-based

Classification of Automatic Phishing Website Detectors”. In: Applications and

the Internet (SAINT), 2011 IEEE/IPSJ 11th International Symposium on.

IEEE. 2011, pp. 190–195.

[172] A. Shaikh, R. Tewari, and M. Agrawal. “On the effectiveness of DNS-based

server selection”. In: INFOCOM 2001. Twentieth Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings. IEEE.

Vol. 3. 2001.

[173] R. Sibson. “SLINK: an optimally efficient algorithm for the single-link cluster

method”. In: The Computer Journal 16.1 (1973).

[174] Oliver Spatscheck et al. Multi-Autonomous System Anycast Content Delivery

Network. US Patent App. 12/645,000. 2009.

[175] Isabelle Stanton and Gabriel Kliot. “Streaming graph partitioning for large dis-

tributed graphs”. In: Proceedings of the 18th ACM SIGKDD international con-

http://www.tp.umu.se/~rosvall/code.html
http://www.tp.umu.se/~rosvall/code.html

REFERENCES 117

ference on Knowledge discovery and data mining. ACM. 2012, pp. 1222–

1230.

[176] State of the Domain. Tech. rep. Verisign Inc, 2012.

[177] State of the Internet: Q4 2012 Report. Tech. rep. Q4-2012. Akamai Technolo-

gies, 2012.

[178] James PG Sterbenz et al. “Evaluation of network resilience, survivability, and

disruption tolerance: analysis, topology generation, simulation, and experi-

mentation”. In: Telecommunication Systems (2011), pp. 1–32.

[179] William Timothy Strayer et al. Method and system for detecting attack path

connections in a computer network using state-space correlation. US Patent

8,125,898. 2012.

[180] Alan T. Sullivan. “Methods and systems for node ranking based on DNS ses-

sion data”. US Patent 2012/8090726. 2012.

[181] Hung-Min Sun et al. “DepenDNS: Dependable mechanism against DNS

cache poisoning”. In: Cryptology and Network Security. Springer, 2009,

pp. 174–188.

[182] Robert E. Tarjan and Jan van Leeuwen. “Worst-case Analysis of Set Union

Algorithms”. In: J. ACM 31 (2 1984), pp. 245–281.

[183] Robert Endre Tarjan. “Efficiency of a Good But Not Linear Set Union Algo-

rithm”. In: J. ACM 22 (2 1975), pp. 215–225.

[184] Claudio Tesoriero. Getting Started with OrientDB. Packt Publishing Ltd, 2013.

[185] Maksim Tsvetovat and Alexander Kouznetsov. Social Network Analysis for

Startups: Finding connections on the social web. O’Reilly Media, Inc., 2011.

[186] Twitter. URL: http://www.twitter.com/.

[187] Johan Ugander et al. “The anatomy of the facebook social graph”. In: arXiv

preprint arXiv:1111.4503 (2011).

[188] Thomas W Valente. Social networks and health. Oxford University Press Ox-

ford, 2010.

[189] Jacobus Van Der Merwe et al. Intelligent computer network routing using log-

ically centralized, physically distributed servers distinct from network routers.

US Patent 7,904,589. 2011.

[190] Paul Vixie. “What DNS Is Not”. In: Queue 7.10 (2009).

http://www.twitter.com/

118 REFERENCES

[191] Paul Vixie, Gerry Sneeringer, and Mark Schleifer. Events of 21-Oct-2002.

Tech. rep. ISC/UMD/Cogent, 2002.

[192] Jian Wang et al. “Model for router-level Internet topology based on attribute

evolution”. In: Communications Letters, IEEE 13.6 (2009), pp. 447–449.

[193] Jian-Wei Wang and Li-Li Rong. “Cascade-based attack vulnerability on the

US power grid”. In: Safety Science 47.10 (2009), pp. 1332–1336.

[194] X. Wang and D. Loguinov. “Understanding and modeling the Internet topol-

ogy: economics and evolution perspective”. In: IEEE/ACM Transactions on

Networking (TON) 18.1 (2010).

[195] Xiaoming Wang and Dmitri Loguinov. “Wealth-Based Evolution Model for the

Internet AS-Level Topology.” In: INFOCOM. 2006.

[196] Kanyapat Watcharasitthiwat and Paramote Wardkein. “Reliability optimization

of topology communication network design using an improved ant colony op-

timization”. In: Computers & Electrical Engineering 35.5 (2009), pp. 730–747.

[197] Duncan J Watts and Steven H Strogatz. “Collective dynamics of ‘small-

world’networks”. In: nature 393.6684 (1998), pp. 440–442.

[198] Jim Webber. “A programmatic introduction to Neo4j”. In: Proceedings of the

3rd annual conference on Systems, programming, and applications: software

for humanity. ACM. 2012, pp. 217–218.

[199] Duane Wessels et al. “Measurements and Laboratory Simulations of the Up-

per DNS Hierarchy”. In: Passive and Active Network Measurement. Ed. by

Chadi Barakat and Ian Pratt. Vol. 3015. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2004.

[200] Jian Wu et al. “Internet routing resilience to failures: analysis and implica-

tions”. In: Proceedings of the 2007 ACM CoNEXT conference. ACM. 2007,

p. 25.

[201] Almerima Jamakovic Yakup Koç and Bart Gijsen. “A Global Reference Model

of the DNS”. In: Proceedings of DNS EASY 2011 Workshop (2012).

[202] Boru Yan et al. “Detection and defence of DNS spoofing attack.” In: Jisuanji

Gongcheng/ Computer Engineering 32.21 (2006), pp. 130–132.

REFERENCES 119

[203] Chao Zhang et al. “Modeling Crime diffusion and crime suppression on trans-

portation networks: An initial report”. In: The AAAI Fall Symposium 2013 on

Social Networks and Social Contagion (SNSC). 2013.

[204] Guo-Qing Zhang, Di Wang, and Guo-Jie Li. “Enhancing the transmission ef-

ficiency by edge deletion in scale-free networks”. In: Physical Review E 76.1

(2007).

[205] Shihua Zhang, Xuemei Ning, and Xiang-Sun Zhang. “Identification of func-

tional modules in a PPI network by clique percolation clustering”. In: Compu-

tational Biology and Chemistry 30.6 (2006), pp. 445–451.

[206] Yun Zhang et al. “Genome-Scale Computational Approaches to Memory-

Intensive Applications in Systems Biology”. In: Proceedings of the 2005

ACM/IEEE conference on Supercomputing. 2005.

[207] Yuzhou Zhang et al. “Parallel community detection on large networks with

propinquity dynamics”. In: Proceedings of the 15th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining. 2009, pp. 997–

1006.

[208] Paul Zikopoulos, Chris Eaton, et al. Understanding big data: Analytics for

enterprise class hadoop and streaming data. McGraw-Hill Osborne Media,

2011.

	1 Introduction
	1.1 Motivation
	1.1.1 Large-Scale Networks to Extract Knowledge from Real-World Systems
	1.1.1.1 The Intriguing Case of The Internet

	1.1.2 Network Algorithms and the Cost of Extracting Knowledge
	1.1.2.1 Community Detection Algorithms

	1.2 Original Contributions
	1.2.1 Parallel Network Community Detection Algorithms
	1.2.2 Network-Based Methodologies to Study the Internet

	1.3 Organization of The Thesis

	2 Background and Definitions
	2.1 Networks: the Bridge between Raw Data and Knowledge
	2.2 Connectivity Features of Network Nodes
	2.2.1 Direct Connectivity
	2.2.2 Local Connectivity
	2.2.3 Global Connectivity

	2.3 Community Detection in Networks

	3 Parallel Network Community Detection Algorithms
	3.1 What, Why and How of k-Clique Communities
	3.2 Related Work
	3.3 Problem Formulation
	3.4 Scalability Issues of k-Clique Community Detection
	3.5 Algorithms to Extract and Merge Connected Components
	3.6 A Parallel Algorithm to Detect k-Clique Communities
	3.6.1 Worst-Case Algorithm Complexities

	3.7 A Parallel Algorithm to Detect k-Clique Communities (on Steroids)
	3.7.1 A Sliding Window To Enable Thread Cooperation
	3.7.2 Algorithm Description

	3.8 Experimental Results
	3.8.1 Experimental Setup and Input Data
	3.8.2 Experiments

	3.9 Discussion and Conclusion

	4 Network-Based Methodologies to Study the Internet
	4.1 Networks, Internet Companies, and Stock Markets
	4.1.1 Introduction
	4.1.2 Related Work
	4.1.3 Methodology
	4.1.4 Investigated Companies
	4.1.5 Results
	4.1.6 Conclusion and Future Directions

	4.2 Network Models of the Internet DNS Traffic
	4.2.1 Introduction and Related Work
	4.2.2 Understanding The DNS System
	4.2.3 DNS Modeling Methodologies
	4.2.3.1 Normalizing Non-Uniform TTL Values
	4.2.3.2 Bipartite Network Models of the DNS
	4.2.3.3 Common-Neighbors Network Models of the DNS

	4.2.4 DNS Ranking Methodologies
	4.2.5 Results and Validation
	4.2.6 Future Work Items
	4.2.7 Conclusion

	5 Conclusions and Future Directions
	5.1 Parallel Network Community Detection Algorithms
	5.2 Network-Based Methodologies to Study the Internet

	A Proofs of Our Theorems
	A.1 Proof of Correctness of the Connected Components Merging Algorithm
	A.2 A Parallel Algorithm to Detect k-Clique Communities
	A.2.1 Proof of Worst-Case Time Complexity
	A.2.2 Proof of Worst-Case Space Complexity

	A.3 A Parallel Algorithm to Detect k-Clique Communities (on Steroids)
	A.3.1 Proof of Worst-Case Time Complexity
	A.3.2 Proof of Worst-Case Space Complexity

