105 research outputs found

    Decoding HD-EMG Signals for Myoelectric Control-How Small Can the Analysis Window Size be?

    Get PDF

    Current state of digital signal processing in myoelectric interfaces and related applications

    Get PDF
    This review discusses the critical issues and recommended practices from the perspective of myoelectric interfaces. The major benefits and challenges of myoelectric interfaces are evaluated. The article aims to fill gaps left by previous reviews and identify avenues for future research. Recommendations are given, for example, for electrode placement, sampling rate, segmentation, and classifiers. Four groups of applications where myoelectric interfaces have been adopted are identified: assistive technology, rehabilitation technology, input devices, and silent speech interfaces. The state-of-the-art applications in each of these groups are presented.Peer reviewe

    Novel Bidirectional Body - Machine Interface to Control Upper Limb Prosthesis

    Get PDF
    Objective. The journey of a bionic prosthetic user is characterized by the opportunities and limitations involved in adopting a device (the prosthesis) that should enable activities of daily living (ADL). Within this context, experiencing a bionic hand as a functional (and, possibly, embodied) limb constitutes the premise for mitigating the risk of its abandonment through the continuous use of the device. To achieve such a result, different aspects must be considered for making the artificial limb an effective support for carrying out ADLs. Among them, intuitive and robust control is fundamental to improving amputees’ quality of life using upper limb prostheses. Still, as artificial proprioception is essential to perceive the prosthesis movement without constant visual attention, a good control framework may not be enough to restore practical functionality to the limb. To overcome this, bidirectional communication between the user and the prosthesis has been recently introduced and is a requirement of utmost importance in developing prosthetic hands. Indeed, closing the control loop between the user and a prosthesis by providing artificial sensory feedback is a fundamental step towards the complete restoration of the lost sensory-motor functions. Within my PhD work, I proposed the development of a more controllable and sensitive human-like hand prosthesis, i.e., the Hannes prosthetic hand, to improve its usability and effectiveness. Approach. To achieve the objectives of this thesis work, I developed a modular and scalable software and firmware architecture to control the Hannes prosthetic multi-Degree of Freedom (DoF) system and to fit all users’ needs (hand aperture, wrist rotation, and wrist flexion in different combinations). On top of this, I developed several Pattern Recognition (PR) algorithms to translate electromyographic (EMG) activity into complex movements. However, stability and repeatability were still unmet requirements in multi-DoF upper limb systems; hence, I started by investigating different strategies to produce a more robust control. To do this, EMG signals were collected from trans-radial amputees using an array of up to six sensors placed over the skin. Secondly, I developed a vibrotactile system to implement haptic feedback to restore proprioception and create a bidirectional connection between the user and the prosthesis. Similarly, I implemented an object stiffness detection to restore tactile sensation able to connect the user with the external word. This closed-loop control between EMG and vibration feedback is essential to implementing a Bidirectional Body - Machine Interface to impact amputees’ daily life strongly. For each of these three activities: (i) implementation of robust pattern recognition control algorithms, (ii) restoration of proprioception, and (iii) restoration of the feeling of the grasped object's stiffness, I performed a study where data from healthy subjects and amputees was collected, in order to demonstrate the efficacy and usability of my implementations. In each study, I evaluated both the algorithms and the subjects’ ability to use the prosthesis by means of the F1Score parameter (offline) and the Target Achievement Control test-TAC (online). With this test, I analyzed the error rate, path efficiency, and time efficiency in completing different tasks. Main results. Among the several tested methods for Pattern Recognition, the Non-Linear Logistic Regression (NLR) resulted to be the best algorithm in terms of F1Score (99%, robustness), whereas the minimum number of electrodes needed for its functioning was determined to be 4 in the conducted offline analyses. Further, I demonstrated that its low computational burden allowed its implementation and integration on a microcontroller running at a sampling frequency of 300Hz (efficiency). Finally, the online implementation allowed the subject to simultaneously control the Hannes prosthesis DoFs, in a bioinspired and human-like way. In addition, I performed further tests with the same NLR-based control by endowing it with closed-loop proprioceptive feedback. In this scenario, the results achieved during the TAC test obtained an error rate of 15% and a path efficiency of 60% in experiments where no sources of information were available (no visual and no audio feedback). Such results demonstrated an improvement in the controllability of the system with an impact on user experience. Significance. The obtained results confirmed the hypothesis of improving robustness and efficiency of a prosthetic control thanks to of the implemented closed-loop approach. The bidirectional communication between the user and the prosthesis is capable to restore the loss of sensory functionality, with promising implications on direct translation in the clinical practice

    Investigating motor skill in closed-loop myoelectric hand prostheses:Through speed-accuracy trade-offs

    Get PDF

    Towards Power-Efficient Design of Myoelectric Controller based on Evolutionary Computation

    Full text link
    Myoelectric pattern recognition is one of the important aspects in the design of the control strategy for various applications including upper-limb prostheses and bio-robotic hand movement systems. The current work has proposed an approach to design an energy-efficient EMG-based controller by considering a supervised learning framework using a kernelized SVM classifier for decoding the information of surface electromyography (sEMG) signals to infer the underlying muscle movements. In order to achieve the optimized performance of the EMG-based controller, our main strategy of classifier design is to reduce the false movements of the overall system (when the EMG-based controller is at the `Rest' position). To this end, unlike the traditional single training objective of soft margin kernelized SVM, we have formulated the training algorithm of the proposed supervised learning system as a general constrained multi-objective optimization problem. An elitist multi-objective evolutionary algorithm −- the non-dominated sorting genetic algorithm II (NSGA-II) has been used for the tuning of SVM hyperparameters. We have presented the experimental results by performing the experiments on a dataset consisting of the sEMG signals collected from eleven subjects at five different upper limb positions. It is evident from the presented result that the proposed approach provides much more flexibility to the designer in selecting the parameters of the classifier to optimize the energy efficiency of the EMG-based controller.Comment: Submitted to IEEE Journa

    Electronic systems for the restoration of the sense of touch in upper limb prosthetics

    Get PDF
    In the last few years, research on active prosthetics for upper limbs focused on improving the human functionalities and the control. New methods have been proposed for measuring the user muscle activity and translating it into the prosthesis control commands. Developing the feed-forward interface so that the prosthesis better follows the intention of the user is an important step towards improving the quality of life of people with limb amputation. However, prosthesis users can neither feel if something or someone is touching them over the prosthesis and nor perceive the temperature or roughness of objects. Prosthesis users are helped by looking at an object, but they cannot detect anything otherwise. Their sight gives them most information. Therefore, to foster the prosthesis embodiment and utility, it is necessary to have a prosthetic system that not only responds to the control signals provided by the user, but also transmits back to the user the information about the current state of the prosthesis. This thesis presents an electronic skin system to close the loop in prostheses towards the restoration of the sense of touch in prosthesis users. The proposed electronic skin system inlcudes an advanced distributed sensing (electronic skin), a system for (i) signal conditioning, (ii) data acquisition, and (iii) data processing, and a stimulation system. The idea is to integrate all these components into a myoelectric prosthesis. Embedding the electronic system and the sensing materials is a critical issue on the way of development of new prostheses. In particular, processing the data, originated from the electronic skin, into low- or high-level information is the key issue to be addressed by the embedded electronic system. Recently, it has been proved that the Machine Learning is a promising approach in processing tactile sensors information. Many studies have been shown the Machine Learning eectiveness in the classication of input touch modalities.More specically, this thesis is focused on the stimulation system, allowing the communication of a mechanical interaction from the electronic skin to prosthesis users, and the dedicated implementation of algorithms for processing tactile data originating from the electronic skin. On system level, the thesis provides design of the experimental setup, experimental protocol, and of algorithms to process tactile data. On architectural level, the thesis proposes a design ow for the implementation of digital circuits for both FPGA and integrated circuits, and techniques for the power management of embedded systems for Machine Learning algorithms

    Functionally Adaptive Myosite Selection using conformable HD sEMG electrodes for movement-pattern classification

    Get PDF
    Myoelectric prosthesis systems currently use advanced control schemes such as pattern recognition to classify muscle activation signals as intended movement classes. For this classification, generally, untargeted, equally spaced electrodes placed circumferentially around the muscle belly of the forearm, are used for acquisition of surface electromyogram (sEMG) for tran-radial amputee subjects. We propose a novel system, consisting of a hardware and software component. We built the hardware component in the form of a flexible and conformable high-density sEMG array. We tested the signal quality and electrode-skin contact characteristics to demonstrate the quality and conformability of the electrode array. We built the software component of the system based on separability criteria. This proposed system is called functionally adaptive myoelectrode site (myosite) selection (FAMS) and is to identify optimal myosites for pattern recognition. Our study investigates the effects of optimal myosite selection with increase in the number of movement classes and inclusion of fine motor movements. We also used myosite selection from current clinical and research procedures and compared the performances of FAMS to existing systems. Results of our study indicate that using optimal myosites selected using FAMS for movement pattern classification improves performance and this becomes more evident with increase in the number of selected myosites. The significance of using optimal myosites increases when more movement classes are included. This work also shows that the optimal myosites change spatially with the type and number of movement classes included for classification. We then explored other future applications of 1) FAMS in temporal adaptations to help prosthetic users begin early use of pattern recognition based prosthesis system and 2) extending FAMS to site selection for direct control so as to make FAMS a universal electrode interface for myoelectric prosthesis. Preliminary study results in these areas are presented in this work. The electrode design was further improved to fit inside of a prosthesis. This system has the capabilities to become an off-the-shelf universal system that can be prescribed for any myoelectric prosthesis user irrespective of their level of amputation and experience with using a myoelectric prosthesis. This system can reduce pre-prosthetic training time and facilitate early fitting. This system also removes the need for refitting every time the user changes the movement classes controlled by the prosthesis

    Performance evaluation of convolutional neural network for hand gesture recognition using EMG

    Full text link
    peer reviewedElectromyography (EMG) is a measure of electrical activity generated by the contraction of muscles. Non-invasive surface EMG (sEMG)-based pattern recognition methods have shown the potential for upper limb prosthesis control. However, it is still insufficient for natural control. Recent advancements in deep learning have shown tremendous progress in biosignal processing. Multiple architectures have been proposed yielding high accuracies (>95%) for offline analysis, yet the delay caused due to optimization of the system remains a challenge for its real-time application. From this arises a need for optimized deep learning architecture based on fine-tuned hyper-parameters. Although the chance of achieving convergence is random, however, it is important to observe that the performance gain made is significant enough to justify extra computation. In this study, the convolutional neural network (CNN) was implemented to decode hand gestures from the sEMG data recorded from 18 subjects to investigate the effect of hyper-parameters on each hand gesture. Results showed that the learning rate set to either 0.0001 or 0.001 with 80-100 epochs significantly outperformed (p < 0.05) other considerations. In addition, it was observed that regardless of network configuration some motions (close hand, flex hand, extend the hand and fine grip) performed better (83.7% ± 13.5%, 71.2% ± 20.2%, 82.6% ± 13.9% and 74.6% ± 15%, respectively) throughout the course of study. So, a robust and stable myoelectric control can be designed on the basis of the best performing hand motions. With improved recognition and uniform gain in performance, the deep learning-based approach has the potential to be a more robust alternative to traditional machine learning algorithms
    • …
    corecore