6 research outputs found

    Trusted-HB: a low-cost version of HB+ secure against Man-in-The-Middle attacks

    Full text link
    Since the introduction at Crypto'05 by Juels and Weis of the protocol HB+, a lightweight protocol secure against active attacks but only in a detection based-model, many works have tried to enhance its security. We propose here a new approach to achieve resistance against Man-in-The-Middle attacks. Our requirements - in terms of extra communications and hardware - are surprisingly low.Comment: submitted to IEEE Transactions on Information Theor

    Secure and Efficient HB-CM Entity Authentication Protocol

    Get PDF
    The simple, computationally efficient LPN-based HB-like entity authentication protocols have attracted a great deal of attention in the past few years due to the broad application prospect in low-cost pervasive devices. At present, the most efficient protocol is HB#^\#, which is proven to resist the GRS attack under the conjecture that it is secure in the DET-model. In this paper, we introduce an innovative HB-CM−^- protocol, which significantly reduces the storage requirement while maintaining the same level of communication cost. We develop the concept of equivalence class, and present HB-CM−^- reductionist proof that overcomes an inherent limitation in the HB#^\# security proof. In fact, HB#^\# is only provably resistant to partial instances of GRS attack, while we prove that HB-CM−^- can prevent the full GRS attack except one trivial case. In addition, we propose a new noise mode for all HB-like protocols in order to thwart the latest OOV man-in-the-middle attack, which can effectively compromise all current HB-like protocols with the basic Bernoulli nose mode. The HB-CM−^- protocol along with the proposed noise mode constitutes our final protocol: HB-CM

    Security and Privacy of Radio Frequency Identification

    Get PDF
    Tanenbaum, A.S. [Promotor]Crispo, B. [Copromotor

    Efficient Authentication, Node Clone Detection, and Secure Data Aggregation for Sensor Networks

    Get PDF
    Sensor networks are innovative wireless networks consisting of a large number of low-cost, resource-constrained sensor nodes that collect, process, and transmit data in a distributed and collaborative way. There are numerous applications for wireless sensor networks, and security is vital for many of them. However, sensor nodes suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the lack of infrastructure, all of which impose formidable security challenges and call for innovative approaches. In this thesis, we present our research results on three important aspects of securing sensor networks: lightweight entity authentication, distributed node clone detection, and secure data aggregation. As the technical core of our lightweight authentication proposals, a special type of circulant matrix named circulant-P2 matrix is introduced. We prove the linear independence of matrix vectors, present efficient algorithms on matrix operations, and explore other important properties. By combining circulant-P2 matrix with the learning parity with noise problem, we develop two one-way authentication protocols: the innovative LCMQ protocol, which is provably secure against all probabilistic polynomial-time attacks and provides remarkable performance on almost all metrics except one mild requirement for the verifier's computational capacity, and the HBC^C protocol, which utilizes the conventional HB-like authentication structure to preserve the bit-operation only computation requirement for both participants and consumes less key storage than previous HB-like protocols without sacrificing other performance. Moreover, two enhancement mechanisms are provided to protect the HB-like protocols from known attacks and to improve performance. For both protocols, practical parameters for different security levels are recommended. In addition, we build a framework to extend enhanced HB-like protocols to mutual authentication in a communication-efficient fashion. Node clone attack, that is, the attempt by adversaries to add one or more nodes to the network by cloning captured nodes, imposes a severe threat to wireless sensor networks. To cope with it, we propose two distributed detection protocols with difference tradeoffs on network conditions and performance. The first one is based on distributed hash table, by which a fully decentralized, key-based caching and checking system is constructed to deterministically catch cloned nodes in general sensor networks. The protocol performance of efficient storage consumption and high security level is theoretically deducted through a probability model, and the resulting equations, with necessary adjustments for real application, are supported by the simulations. The other is the randomly directed exploration protocol, which presents notable communication performance and minimal storage consumption by an elegant probabilistic directed forwarding technique along with random initial direction and border determination. The extensive experimental results uphold the protocol design and show its efficiency on communication overhead and satisfactory detection probability. Data aggregation is an inherent requirement for many sensor network applications, but designing secure mechanisms for data aggregation is very challenging because the aggregation nature that requires intermediate nodes to process and change messages, and the security objective to prevent malicious manipulation, conflict with each other to a great extent. To fulfill different challenges of secure data aggregation, we present two types of approaches. The first is to provide cryptographic integrity mechanisms for general data aggregation. Based on recent developments of homomorphic primitives, we propose three integrity schemes: a concrete homomorphic MAC construction, homomorphic hash plus aggregate MAC, and homomorphic hash with identity-based aggregate signature, which provide different tradeoffs on security assumption, communication payload, and computation cost. The other is a substantial data aggregation scheme that is suitable for a specific and popular class of aggregation applications, embedded with built-in security techniques that effectively defeat outside and inside attacks. Its foundation is a new data structure---secure Bloom filter, which combines HMAC with Bloom filter. The secure Bloom filter is naturally compatible with aggregation and has reliable security properties. We systematically analyze the scheme's performance and run extensive simulations on different network scenarios for evaluation. The simulation results demonstrate that the scheme presents good performance on security, communication cost, and balance

    Trusted and Privacy-preserving Embedded Systems: Advances in Design, Analysis and Application of Lightweight Privacy-preserving Authentication and Physical Security Primitives

    Get PDF
    Radio Frequency Identification (RFID) enables RFID readers to perform fully automatic wireless identification of objects labeled with RFID tags and is widely deployed to many applications, such as access control, electronic tickets and payment as well as electronic passports. This prevalence of RFID technology introduces various risks, in particular concerning the privacy of its users and holders. Despite the privacy risk, classical threats to authentication and identification systems must be considered to prevent the adversary from impersonating or copying (cloning) a tag. This thesis summarizes the state of the art in secure and privacy-preserving authentication for RFID tags with a particular focus on solutions based on Physically Unclonable Functions (PUFs). It presents advancements in the design, analysis and evaluation of secure and privacy-preserving authentication protocols for RFID systems and PUFs. Formalizing the security and privacy requirements on RFID systems is essential for the design of provably secure and privacy-preserving RFID protocols. However, existing RFID security and privacy models in the literature are often incomparable and in part do not reflect the capabilities of real-world adversaries. We investigate subtle issues such as tag corruption aspects that lead to the impossibility of achieving both mutual authentication and any reasonable notion of privacy in one of the most comprehensive security and privacy models, which is the basis of many subsequent works. Our results led to the refinement of this privacy model and were considered in subsequent works on privacy-preserving RFID systems. A promising approach to enhance the privacy in RFID systems without lifting the computational requirements on the tags are anonymizers. These are special devices that take off the computational workload from the tags. While existing anonymizer-based protocols are subject to impersonation and denial-of-service attacks, existing RFID security and privacy models do not include anonymizers. We present the first security and privacy framework for anonymizer-enabled RFID systems and two privacy-preserving RFID authentication schemes using anonymizers. Both schemes achieve several appealing features that were not simultaneously achieved by any previous proposal. The first protocol is very efficient for all involved entities, achieves privacy under tag corruption. It is secure against impersonation attacks and forgeries even if the adversary can corrupt the anonymizers. The second scheme provides for the first time anonymity and untraceability of tags against readers as well as secure tag authentication against collisions of malicious readers and anonymizers using tags that cannot perform public-key cryptography (i.e., modular exponentiations). The RFID tags commonly used in practice are cost-efficient tokens without expensive hardware protection mechanisms. Physically Unclonable Functions (PUFs) promise to provide an effective security mechanism for RFID tags to protect against basic hardware attacks. However, existing PUF-based RFID authentication schemes are not scalable, allow only for a limited number of authentications and are subject to replay, denial-of-service and emulation attacks. We present two scalable PUF-based authentication schemes that overcome these problems. The first protocol supports tag and reader authentication, is resistant to emulation attacks and highly scalable. The second protocol uses a PUF-based key storage and addresses an open question on the feasibility of destructive privacy, i.e., the privacy of tags that are destroyed during tag corruption. The security of PUFs relies on assumptions on physical properties and is still under investigation. PUF evaluation results in the literature are difficult to compare due to varying test conditions and different analysis methods. We present the first large-scale security analysis of ASIC implementations of the five most popular electronic PUF types, including Arbiter, Ring Oscillator, SRAM, Flip-Flop and Latch PUFs. We present a new PUF evaluation methodology that allows a more precise assessment of the unpredictability properties than previous approaches and we quantify the most important properties of PUFs for their use in cryptographic schemes. PUFs have been proposed for various applications, including anti-counterfeiting and authentication schemes. However, only rudimentary PUF security models exist, limiting the confidence in the security claims of PUF-based security mechanisms. We present a formal security framework for PUF-based primitives, which has been used in subsequent works to capture the properties of image-based PUFs and in the design of anti-counterfeiting mechanisms and physical hash functions

    Security and Privacy in RFID Systems

    Get PDF
    This PhD thesis is concerned with authentication protocols using portable lightweight devices such as RFID tags. these devices have lately gained a significant attention for the diversity of the applications that could benefit form their features, ranging from inventory systems and building access control, to medical devices. However, the emergence of this technology has raised concerns about the possible loss of privacy carrying such tags induce in allowing tracing persons or unveiling the contents of a hidden package. this fear led to the appearance of several organizations which goal is to stop the spread of RFID tags. We take a cryptographic viewpoint on the issue and study the extent of security and privacy that RFID-based solutions can offer. In the first part of this thesis, we concentrate on analyzing two original primitives that were proposed to ensure security for RFID tags. the first one, HB#, is a dedicated authentication protocol that exclusively uses very simple arithmetic operations: bitwise AND and XOR. HB# was proven to be secure against a certain class of man-in-the-middle attacks and conjectured secure against more general ones. We show that the latter conjecture does not hold by describing a practical attack that allows an attacker to recover the tag's secret key. Moreover, we show that to be immune against our attack, HB#'s secret key size has to be increased to be more than 15 000 bits. this is an unpractical value for the considered applications. We then turn to SQUASH, a message authentication code built around a public-key encryption scheme, namely Rabin's scheme. By mounting a practical key recovery attack on the earlier version of SQUASH, we show that the security of all versions of SQUASH is unrelated to the security of Rabin encryption function. The second part of the thesis is dedicated to the privacy aspects related to the RFID technology. We first emphasize the importance of establishing a framework that correctly captures the intuition that a privacy-preserving protocol does not leak any information about its participants. For that, we show how several protocols that were supported by simple arguments, in contrast to a formal analysis, fail to ensure privacy. Namely, we target ProbIP, MARP, Auth2, YA-TRAP, YA-TRAP+, O-TRAP, RIPP-FS, and the Lim-Kwon protocol. We also illustrate the shortcomings of other privacy models such as the LBdM model. The rest of the dissertation is then dedicated to our privacy model. Contrarily to most RFID privacy models that limit privacy protection to the inability of linking the identity of two participants in two different protocol instances, we introduce a privacy model for RFID tags that proves to be the exact formalization of the intuition that a private protocol should not leak any information to the adversary. the model we introduce is a refinement of Vaudenay's one that invalidates a number of its limitations. Within these settings, we are able to show that the strongest notion of privacy, namely privacy against adversaries that have a prior knowledge of all the tags' secrets, is realizable. To instantiate an authentication protocol that achieves this level of privacy, we use plaintext-aware encryption schemes. We then extend our model to the case of mutual authentication where, in addition to a tag authenticating to the reader, the reverse operation is also required
    corecore