6 research outputs found

    Evaluation of CAN bus security challenges

    Get PDF
    The automobile industry no longer relies on pure mechanical systems; instead, it benefits from many smart features based on advanced embedded electronics. Although the rise in electronics and connectivity has improved comfort, functionality, and safe driving, it has also created new attack surfaces to penetrate the in-vehicle communication network, which was initially designed as a close loop system. For such applications, the Controller Area Network (CAN) is the most-widely used communication protocol, which still suffers from various security issues because of the lack of encryption and authentication. As a result, any malicious/hijacked node can cause catastrophic accidents and financial loss. This paper analyses the CAN bus comprehensively to provide an outlook on security concerns. It also presents the security vulnerabilities of the CAN and a state-of-the-art attack surface with cases of implemented attack scenarios and goes through different solutions that assist in attack prevention, mainly based on an intrusion detection system (IDS

    Systematic Risk Characterisation of Hardware Threats to Automotive System

    Get PDF
    The increasing dependence of modern automotive systems on electronics and software poses cybersecurity risks previously not factored into design and engineering of such systems. Attacks on hardware components, communication modules and embedded software – many of which are purposefully designed for automotive control and communications – are the key focus of this paper. We adopt a novel approach to characterise such attacks using Gajski-Kuhn Y-charts to represent attack manipulation across behavioural, structural and physical domains. Our selection of attacks is evidence-driven demonstrating threats that have been demonstrated to be feasible in the real-world. We then risk assess impact of such threats using the recently adopted ISO/SAE 21434 standard for automotive cybersecurity risk assessment, including mitigations for potential adoption. Our work serves to provide unique insights into the complex dynamic of hardware vulnerabilities and how the industry may address system-level security and protection of modern automotive platforms

    A robust, reliable and deployable framework for In-vehicle security

    Full text link
    Cyber attacks on financial and government institutions, critical infrastructure, voting systems, businesses, modern vehicles, etc., are on the rise. Fully connected autonomous vehicles are more vulnerable than ever to hacking and data theft. This is due to the fact that the protocols used for in-vehicle communication i.e. controller area network (CAN), FlexRay, local interconnect network (LIN), etc., lack basic security features such as message authentication, which makes it vulnerable to a wide range of attacks including spoofing attacks. This research presents methods to protect the vehicle against spoofing attacks. The proposed methods exploit uniqueness in the electronic control unit electronic control unit (ECU) and the physical channel between transmitting and destination nodes for linking the received packet to the source. Impurities in the digital device, physical channel, imperfections in design, material, and length of the channel contribute to the uniqueness of artifacts. I propose novel techniques for electronic control unit (ECU) identification in this research to address security vulnerabilities of the in-vehicle communication. The reliable ECU identification has the potential to prevent spoofing attacks launched over the CAN due to the inconsideration of the message authentication. In this regard, my techniques models the ECU-specific random distortion caused by the imperfections in digital-to-analog converter digital to analog converter (DAC), and semiconductor impurities in the transmitting ECU for fingerprinting. I also model the channel-specific random distortion, impurities in the physical channel, imperfections in design, material, and length of the channel are contributing factors behind physically unclonable artifacts. The lumped element model is used to characterize channel-specific distortions. This research exploits the distortion of the device (ECU) and distortion due to the channel to identify the transmitter and hence authenticate the transmitter.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/154568/1/Azeem Hafeez Final Disseration.pdfDescription of Azeem Hafeez Final Disseration.pdf : Dissertatio

    Securing CAN-Based Cyber-Physical Systems

    Get PDF
    With the exponential growth of cyber-physical systems (CPSs), new security challenges have emerged. Various vulnerabilities, threats, attacks, and controls have been introduced for the new generation of CPS. However, there lacks a systematic review of the CPS security literature. In particular, the heterogeneity of CPS components and the diversity of CPS systems have made it difficult to study the problem with one generalized model. As the first component of this dissertation, existing research on CPS security is studied and systematized under a unified framework. Smart cars, as a CPS application, were further explored under the proposed framework and new attacks are identified and addressed. The Control Area Network (CAN bus) is a prevalent serial communication protocol adopted in industrial CPS, especially in small and large vehicles, ships, planes, and even in drones, radar systems, and submarines. Unfortunately, the CAN bus was designed without any security considerations. We then propose and demonstrate a stealthy targeted Denial of Service (DoS) attack against CAN. Experimentation shows that the attack is effective and superior to attacks of the same category due to its stealthiness and ability to avoid detection from current countermeasures. Two controls are proposed to defend against various spoofing and DoS attacks on CAN. The first one aims to minimize the attack using a mechanism called ID-Hopping so that CAN arbitration IDs are randomized so an attacker would not be able to target them. ID-Hopping raises the bar for attackers by randomizing the expected patterns in a CAN network. Such randomization hinders an attacker’s ability to launch targeted DoS attacks. Based on the evaluation on the testbed, the randomization mechanism, ID-Hopping, holds a promising solution for targeted DoS, and reverse engineering CAN IDs, and which CAN networks are most vulnerable. The second countermeasure is a novel CAN firewall that aims to prevent an attacker from launching a plethora of nontraditional attacks on CAN that existing solutions do not adequately address. The firewall is placed between a potential attacker’s node and the rest of the CAN bus. Traffic is controlled bi-directionally between the main bus and the attacker’s side so that only benign traffic can pass to the main bus. This ensures that an attacker cannot arbitrarily inject malicious traffic into the main bus. Demonstration and evaluation of the attack and firewall were conducted by a bit-level analysis, i.e., “Bit banging”, of CAN’s traffic. Results show that the firewall successfully prevents the stealthy targeted DoS attack, as well as, other recent attacks. To evaluate the proposed attack and firewall, a testbed was built that consisted of BeagleBone Black and STM32 Nucleo- 144 microcontrollers to simulate real CAN traffic. Finally, a design of an Intrusion Detection System (IDS) was proposed to complement the firewall. It utilized the proposed firewall to add situational awareness capabilities to the bus’s security posture and detect and react to attacks that might bypass the firewall based on certain rules

    Network Security Monitoring in Environments where Digital and Physical Safety are Critical

    Get PDF
    corecore