2,248 research outputs found

    Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering

    Get PDF
    Background: Many important high throughput projects use in situ hybridization and may require the analysis of images of spatial cross sections of organisms taken with cellular level resolution. Projects creating gene expression atlases at unprecedented scales for the embryonic fruit fly as well as the embryonic and adult mouse already involve the analysis of hundreds of thousands of high resolution experimental images mapping mRNA expression patterns. Challenges include accurate registration of highly deformed tissues, associating cells with known anatomical regions, and identifying groups of genes whose expression is coordinately regulated with respect to both concentration and spatial location. Solutions to these and other challenges will lead to a richer understanding of the complex system aspects of gene regulation in heterogeneous tissue. Results: We present an end-to-end approach for processing raw in situ expression imagery and performing subsequent analysis. We use a non-linear, information theoretic based image registration technique specifically adapted for mapping expression images to anatomical annotations and a method for extracting expression information within an anatomical region. Our method consists of coarse registration, fine registration, and expression feature extraction steps. From this we obtain a matrix for expression characteristics with rows corresponding to genes and columns corresponding to anatomical sub-structures. We perform matrix block cluster analysis using a novel row-column mixture model and we relate clustered patterns to Gene Ontology (GO) annotations. Conclusion: Resulting registrations suggest that our method is robust over intensity levels and shape variations in ISH imagery. Functional enrichment studies from both simple analysis and block clustering indicate that gene relationships consistent with biological knowledge of neuronal gene functions can be extracted from large ISH image databases such as the Allen Brain Atlas [1] and the Max-Planck Institute [2] using our method. While we focus here on imagery and experiments of the mouse brain our approach should be applicable to a variety of in situ experiments

    A Computational Framework for Learning from Complex Data: Formulations, Algorithms, and Applications

    Get PDF
    Many real-world processes are dynamically changing over time. As a consequence, the observed complex data generated by these processes also evolve smoothly. For example, in computational biology, the expression data matrices are evolving, since gene expression controls are deployed sequentially during development in many biological processes. Investigations into the spatial and temporal gene expression dynamics are essential for understanding the regulatory biology governing development. In this dissertation, I mainly focus on two types of complex data: genome-wide spatial gene expression patterns in the model organism fruit fly and Allen Brain Atlas mouse brain data. I provide a framework to explore spatiotemporal regulation of gene expression during development. I develop evolutionary co-clustering formulation to identify co-expressed domains and the associated genes simultaneously over different temporal stages using a mesh-generation pipeline. I also propose to employ the deep convolutional neural networks as a multi-layer feature extractor to generate generic representations for gene expression pattern in situ hybridization (ISH) images. Furthermore, I employ the multi-task learning method to fine-tune the pre-trained models with labeled ISH images. My proposed computational methods are evaluated using synthetic data sets and real biological data sets including the gene expression data from the fruit fly BDGP data sets and Allen Developing Mouse Brain Atlas in comparison with baseline existing methods. Experimental results indicate that the proposed representations, formulations, and methods are efficient and effective in annotating and analyzing the large-scale biological data sets

    Image registration and visualization of in situ gene expression images.

    Get PDF
    In the age of high-throughput molecular biology techniques, scientists have incorporated the methodology of in-situ hybridization to map spatial patterns of gene expression. In order to compare expression patterns within a common tissue structure, these images need to be registered or organized into a common coordinate system for alignment to a reference or atlas images. We use three different image registration methodologies (manual; correlation based; mutual information based) to determine the common coordinate system for the reference and in-situ hybridization images. All three methodologies are incorporated into a Matlab tool to visualize the results in a user friendly way and save them for future work. Our results suggest that the user-defined landmark method is best when considering images from different modalities; automated landmark detection is best when the images are expected to have a high degree of consistency; and the mutual information methodology is useful when the images are from the same modality

    Computational methods to create and analyze a digital gene expression atlas of embryo development from microscopy images

    Full text link
    Abstract The creation of atlases, or digital models where information from different subjects can be combined, is a field of increasing interest in biomedical imaging. When a single image does not contain enough information to appropriately describe the organism under study, it is then necessary to acquire images of several individuals, each of them containing complementary data with respect to the rest of the components in the cohort. This approach allows creating digital prototypes, ranging from anatomical atlases of human patients and organs, obtained for instance from Magnetic Resonance Imaging, to gene expression cartographies of embryo development, typically achieved from Light Microscopy. Within such context, in this PhD Thesis we propose, develop and validate new dedicated image processing methodologies that, based on image registration techniques, bring information from multiple individuals into alignment within a single digital atlas model. We also elaborate a dedicated software visualization platform to explore the resulting wealth of multi-dimensional data and novel analysis algo-rithms to automatically mine the generated resource in search of bio¬logical insights. In particular, this work focuses on gene expression data from developing zebrafish embryos imaged at the cellular resolution level with Two-Photon Laser Scanning Microscopy. Disposing of quantitative measurements relating multiple gene expressions to cell position and their evolution in time is a fundamental prerequisite to understand embryogenesis multi-scale processes. However, the number of gene expressions that can be simultaneously stained in one acquisition is limited due to optical and labeling constraints. These limitations motivate the implementation of atlasing strategies that can recreate a virtual gene expression multiplex. The developed computational tools have been tested in two different scenarios. The first one is the early zebrafish embryogenesis where the resulting atlas constitutes a link between the phenotype and the genotype at the cellular level. The second one is the late zebrafish brain where the resulting atlas allows studies relating gene expression to brain regionalization and neurogenesis. The proposed computational frameworks have been adapted to the requirements of both scenarios, such as the integration of partial views of the embryo into a whole embryo model with cellular resolution or the registration of anatom¬ical traits with deformable transformation models non-dependent on any specific labeling. The software implementation of the atlas generation tool (Match-IT) and the visualization platform (Atlas-IT) together with the gene expression atlas resources developed in this Thesis are to be made freely available to the scientific community. Lastly, a novel proof-of-concept experiment integrates for the first time 3D gene expression atlas resources with cell lineages extracted from live embryos, opening up the door to correlate genetic and cellular spatio-temporal dynamics. La creación de atlas, o modelos digitales, donde la información de distintos sujetos puede ser combinada, es un campo de creciente interés en imagen biomédica. Cuando una sola imagen no contiene suficientes datos como para describir apropiadamente el organismo objeto de estudio, se hace necesario adquirir imágenes de varios individuos, cada una de las cuales contiene información complementaria respecto al resto de componentes del grupo. De este modo, es posible crear prototipos digitales, que pueden ir desde atlas anatómicos de órganos y pacientes humanos, adquiridos por ejemplo mediante Resonancia Magnética, hasta cartografías de la expresión genética del desarrollo de embrionario, típicamente adquiridas mediante Microscopía Optica. Dentro de este contexto, en esta Tesis Doctoral se introducen, desarrollan y validan nuevos métodos de procesado de imagen que, basándose en técnicas de registro de imagen, son capaces de alinear imágenes y datos provenientes de múltiples individuos en un solo atlas digital. Además, se ha elaborado una plataforma de visualization específicamente diseñada para explorar la gran cantidad de datos, caracterizados por su multi-dimensionalidad, que resulta de estos métodos. Asimismo, se han propuesto novedosos algoritmos de análisis y minería de datos que permiten inspeccionar automáticamente los atlas generados en busca de conclusiones biológicas significativas. En particular, este trabajo se centra en datos de expresión genética del desarrollo embrionario del pez cebra, adquiridos mediante Microscopía dos fotones con resolución celular. Disponer de medidas cuantitativas que relacionen estas expresiones genéticas con las posiciones celulares y su evolución en el tiempo es un prerrequisito fundamental para comprender los procesos multi-escala característicos de la morfogénesis. Sin embargo, el número de expresiones genéticos que pueden ser simultáneamente etiquetados en una sola adquisición es reducido debido a limitaciones tanto ópticas como del etiquetado. Estas limitaciones requieren la implementación de estrategias de creación de atlas que puedan recrear un multiplexado virtual de expresiones genéticas. Las herramientas computacionales desarrolladas han sido validadas en dos escenarios distintos. El primer escenario es el desarrollo embrionario temprano del pez cebra, donde el atlas resultante permite constituir un vínculo, a nivel celular, entre el fenotipo y el genotipo de este organismo modelo. El segundo escenario corresponde a estadios tardíos del desarrollo del cerebro del pez cebra, donde el atlas resultante permite relacionar expresiones genéticas con la regionalización del cerebro y la formación de neuronas. La plataforma computacional desarrollada ha sido adaptada a los requisitos y retos planteados en ambos escenarios, como la integración, a resolución celular, de vistas parciales dentro de un modelo consistente en un embrión completo, o el alineamiento entre estructuras de referencia anatómica equivalentes, logrado mediante el uso de modelos de transformación deformables que no requieren ningún marcador específico. Está previsto poner a disposición de la comunidad científica tanto la herramienta de generación de atlas (Match-IT), como su plataforma de visualización (Atlas-IT), así como las bases de datos de expresión genética creadas a partir de estas herramientas. Por último, dentro de la presente Tesis Doctoral, se ha incluido una prueba conceptual innovadora que permite integrar los mencionados atlas de expresión genética tridimensionales dentro del linaje celular extraído de una adquisición in vivo de un embrión. Esta prueba conceptual abre la puerta a la posibilidad de correlar, por primera vez, las dinámicas espacio-temporales de genes y células

    Machine Learning Methods for Brain Image Analysis

    Get PDF
    Understanding how the brain functions and quantifying compound interactions between complex synaptic networks inside the brain remain some of the most challenging problems in neuroscience. Lack or abundance of data, shortage of manpower along with heterogeneity of data following from various species all served as an added complexity to the already perplexing problem. The ability to process vast amount of brain data need to be performed automatically, yet with an accuracy close to manual human-level performance. These automated methods essentially need to generalize well to be able to accommodate data from different species. Also, novel approaches and techniques are becoming a necessity to reveal the correlations between different data modalities in the brain at the global level. In this dissertation, I mainly focus on two problems: automatic segmentation of brain electron microscopy (EM) images and stacks, and integrative analysis of the gene expression and synaptic connectivity in the brain. I propose to use deep learning algorithms for the 2D segmentation of EM images. I designed an automated pipeline with novel insights that was able to achieve state-of-the-art performance on the segmentation of the \textit{Drosophila} brain. I also propose a novel technique for 3D segmentation of EM image stacks that can be trained end-to-end with no prior knowledge of the data. This technique was evaluated in an ongoing online challenge for 3D segmentation of neurites where it achieved accuracy close to a second human observer. Later, I employed ensemble learning methods to perform the first systematic integrative analysis of the genome and connectome in the mouse brain at both the regional- and voxel-level. I show that the connectivity signals can be predicted from the gene expression signatures with an extremely high accuracy. Furthermore, I show that only a certain fraction of genes are responsible for this predictive aspect. Rich functional and cellular analysis of these genes are detailed to validate these findings

    Differential RhoA Dynamics in Migratory and Stationary Cells Measured by FRET and Automated Image Analysis

    Get PDF
    Genetically-encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to study the spatiotemporal regulation of molecular activity in live cells with high resolution. The efficient and accurate quantification of the large amount of imaging data from these single-cell FRET measurements demands robust and automated data analysis. However, the nonlinear movement of live cells presents tremendous challenge for this task. Based on image registration of the single-cell movement, we have developed automated image analysis methods to track and quantify the FRET signals within user-defined subcellular regions. In addition, the subcellular pixels were classified according to their associated FRET signals and the dynamics of the clusters analyzed. The results revealed that the EGF-induced reduction of RhoA activity in migratory HeLa cells is significantly less than that in stationary cells. Furthermore, the RhoA activity is polarized in the migratory cells, with the gradient of polarity oriented toward the opposite direction of cell migration. In contrast, there is a lack of consistent preference in RhoA polarity among stationary cells. Therefore, our image analysis methods can provide powerful tools for high-throughput and systematic investigation of the spatiotemporal molecular activities in regulating functions of live cells with their shapes and positions continuously changing in time

    Biophysical properties and gene expression profile of single periaqueductal gray neurons

    Get PDF
    The midbrain periaqueductal gray (PAG) is a longitudinal columnar structure where instinctive behaviours as diverse as escaping from predators, vocalising, and pup grooming segregate onto distinct anatomical subdivisions. This parallel between behaviour and brain circuit anatomy provides a unique opportunity for investigating how neural mechanisms support the computation of different adaptive actions. In this work, I aimed to characterise the biophysical properties and gene expression profile of single neurons across PAG subdivisions. First, I used loose-seal cell-attached and whole-cell patch-clamp recordings to characterise the biophysical properties of PAG neurons in acute midbrain slices of transgenic mice. I found that, even in the absence of synaptic inputs, GABAergic neurons defined by the expression of the VGAT promoter fire action potentials spontaneously, whereas glutamatergic neurons defined by the expression of the VGluT2 promoter are mostly silent. In addition, VGAT+ neurons had a higher input resistance and a lower action potential threshold than VGluT2+ neurons. Next, to link the expression of ion channels, receptors, and molecular effectors to specific PAG subdivisions, I established a pipeline to perform single-cell RNA-sequencing while preserving the anatomical origin of each neuron. I obtained detailed transcriptomic profiles from VGAT+ and VGluT2+ neurons across PAG subdivisions by individually isolating fluorescently labelled neurons from acute midbrain slices of transgenic mice and processing them with the Smart-seq2 protocol and a target sequencing depth of 4 million reads per sample. Unsupervised clustering of the resulting data revealed putative subpopulations of neurons that mapped onto different PAG subdivisions, whereas differential expression analysis identified candidate genes for setting and regulating key biophysical properties of PAG neurons. By leveraging the unique relationship between PAG circuit anatomy and behavioural output, this work uses anatomical location as an anchor to provide a framework for studying how molecularly defined biophysical properties might underpin behavioural control by the PAG

    Image analysis platforms for exploring genetic and neuronal mechanisms regulating animal behavior

    Get PDF
    An important aim of neuroscience is to understand how gene interactions and neuronal networks regulate animal behavior. The larvae of the marine annelid Platynereis dumerilii provide a convenient system for such integrative studies. These larvae exhibit a wide range of behaviors, including phototaxis, chemotaxis and gravitaxis and at the same time exhibit relatively simple nervous system organization. Due to its small size and transparent body, the Platynereis larva is compatible with whole-body light microscopic imaging following tissue staining protocols. It is also suitable for serial electron microscopic imaging and subsequent neuronal connectome reconstruction. Despite advances in imaging techniques, automated computational tools for large data analysis are not well-established in Platynereis. In the current work, I developed image analysis software for exploring genetic and nervous system mechanisms modulating Platynereis behavior. Exploring gene expression patterns Current labeling and imaging techniques restrict the number of gene expression patterns that can be labelled and visualized in a single specimen, which hinders the study of behaviors driven by multi-molecular interactions. To address this problem, I employed image registration to generate a gene expression atlas that integrates gene expression information from multiple specimens in a common reference space. The gene expression atlas was used to investigate mechanisms regulating larval locomotion, settlement and phototaxis in Platynereis. The atlas can assist in the identification of inter-individual and inter-species variations in gene expression. To provide a representation convenient for exploring gene expression patterns, I created a model of the atlas using 3D graphics software, which enabled convenient data visualization and efficient data storage and sharing. Exploring neuronal networks regulating behavior Neuronal circuitry can be reconstructed from the images obtained from electron microscopy, which resolves very fine structures such as neuron morphology or synapses. The amount of data resulting from electron microscopy and the complexity of neuronal networks represent a significant challenge for manual analysis. To solve this problem, I developed the NeuroDetective software, which models a neuronal circuitry and analyzes the information flow within it. The software combines the advantages of 3D visualization and graph analysis software by integrating neuron morphology and spatial distribution together with synaptic connectivity. NeuroDetective allowed studying the neuronal circuitry responsible for phototaxis in Platynereis larvae, revealing the connections and the neurons important for the network functionality. NeuroDetective facilitated the establishment of a relationship between the function and the structure of the neuronal circuitry in Platynereis phototaxis. Integrating gene expression patterns with neuronal connectivity Neuronal circuitry and its associated modulating biomolecules, such as neurotransmitters and neuropeptides, are thought to be the main factors regulating animal behavior. Therefore it was important to integrate both genetic and neuronal information in order to fully understand how biomolecules in conjunction with neuronal anatomy elicit certain animal behavior. To resolve the difference in specimen preparation for gene expression versus electron microscopy preparations, I developed an image registration procedure to match the signals from these two different datasets. This method enabled the integration the spatial distribution of specific modulators into the analysis of neuronal networks, leading to an improved understanding of the genetic and neuronal mechanisms modulating behavior in Platynereis

    Bioimage informatics in the context of drosophila research

    Get PDF
    Modern biological research relies heavily on microscopic imaging. The advanced genetic toolkit of drosophila makes it possible to label molecular and cellular components with unprecedented level of specificity necessitating the application of the most sophisticated imaging technologies. Imaging in drosophila spans all scales from single molecules to the entire populations of adult organisms, from electron microscopy to live imaging of developmental processes. As the imaging approaches become more complex and ambitious, there is an increasing need for quantitative, computer-mediated image processing and analysis to make sense of the imagery. Bioimage informatics is an emerging research field that covers all aspects of biological image analysis from data handling, through processing, to quantitative measurements, analysis and data presentation. Some of the most advanced, large scale projects, combining cutting edge imaging with complex bioimage informatics pipelines, are realized in the drosophila research community. In this review, we discuss the current research in biological image analysis specifically relevant to the type of systems level image datasets that are uniquely available for the drosophila model system. We focus on how state-of-the-art computer vision algorithms are impacting the ability of drosophila researchers to analyze biological systems in space and time. We pay particular attention to how these algorithmic advances from computer science are made usable to practicing biologists through open source platforms and how biologists can themselves participate in their further development

    Methods and algorithms for quantitative analysis of metallomic images to assess traumatic brain injury

    Get PDF
    The primary aim of this thesis is to develop image processing algorithms to quantitatively determine the link between traumatic brain injury (TBI) severity and chronic traumatic encephalopathy (CTE) neuropathology, specifically looking into the role of blood-brain barrier disruption following TBI. In order to causally investigate the relationship between the tau protein neurodegenerative disease CTE and TBI, mouse models of blast neurotrauma (BNT) and impact neurotrauma (INT) are investigated. First, a high-speed video tracking algorithm is developed based on K-means clustering, active contours and Kalman filtering to comparatively study the head kinematics in blast and impact experiments. Then, to compare BNT and INT neuropathology, methods for quantitative analysis of macroscopic optical images and fluorescent images are described. The secondary aim of this thesis focuses on developing methods for a novel application of metallomic imaging mass spectrometry (MIMS) to biological tissue. Unlike traditional modalities used to assess neuropathology, that suffer from limited sensitivity and analytical capacity, MIMS uses a mass spectrometer -- an analytical instrument for measuring elements and isotopes with high dynamic range, sensitivity and specificity -- as the imaging sensor to generate spatial maps with spectral (vector-valued) data per pixel. Given the vector nature of MIMS data, a unique end-to-end processing pipeline is designed to support data acquisition, visualization and interpretation. A novel multi-modal and multi-channel image registration (MMMCIR) method using multi-variate mutual information as a similarity metric is developed in order to establish correspondence between two images of arbitrary modality. The MMMCIR method is then used to automatically segment MIMS images of the mouse brain and systematically evaluate the levels of relevant elements and isotopes after experimental closed-head impact injury on the impact side (ipsilateral) and opposing side (contralateral) of the brain. This method quantifiably confirms observed differences in gadolinium levels for a cohort of images. Finally, MIMS images of human lacrimal sac biopsy samples are used for preliminary clinicopathological assessments, supporting the utility of the unique insights MIMS provides by correlating areas of inflammation to areas of elevated toxic metals. The image processing methods developed in this work demonstrate the significant capabilities of MIMS and its role in enhancing our understanding of the underlying pathological mechanisms of TBI and other medical conditions.2019-07-09T00:00:00
    corecore