13,688 research outputs found

    A Relational Hyperlink Analysis of an Online Social Movement

    Get PDF
    In this paper we propose relational hyperlink analysis (RHA) as a distinct approach for empirical social science research into hyperlink networks on the World Wide Web. We demonstrate this approach, which employs the ideas and techniques of social network analysis (in particular, exponential random graph modeling), in a study of the hyperlinking behaviors of Australian asylum advocacy groups. We show that compared with the commonly-used hyperlink counts regression approach, relational hyperlink analysis can lead to fundamentally different conclusions about the social processes underpinning hyperlinking behavior. In particular, in trying to understand why social ties are formed, counts regressions may over-estimate the role of actor attributes in the formation of hyperlinks when endogenous, purely structural network effects are not taken into account. Our analysis involves an innovative joint use of two software programs: VOSON, for the automated retrieval and processing of considerable quantities of hyperlink data, and LPNet, for the statistical modeling of social network data. Together, VOSON and LPNet enable new and unique research into social networks in the online world, and our paper highlights the importance of complementary research tools for social science research into the web

    Stochastic Sampling and Machine Learning Techniques for Social Media State Production

    Get PDF
    The rise in the importance of social media platforms as communication tools has been both a blessing and a curse. For scientists, they offer an unparalleled opportunity to study human social networks. However, these platforms have also been used to propagate misinformation and hate speech with alarming velocity and frequency. The overarching aim of our research is to leverage the data from social media platforms to create and evaluate a high-fidelity, at-scale computational simulation of online social behavior which can provide a deep quantitative understanding of adversaries\u27 use of the global information environment. Our hope is that this type of simulation can be used to predict and understand the spread of misinformation, false narratives, fraudulent financial pump and dump schemes, and cybersecurity threats. To do this, our research team has created an agent-based model that can handle a variety of prediction tasks. This dissertation introduces a set of sampling and deep learning techniques that we developed to predict specific aspects of the evolution of online social networks that have proven to be challenging to accurately predict with the agent-based model. First, we compare different strategies for predicting network evolution with sampled historical data based on community features. We demonstrate that our community-based model outperforms the global one at predicting population, user, and content activity, along with network topology over different datasets. Second, we introduce a deep learning model for burst prediction. Bursts may serve as a signal of topics that are of growing real-world interest. Since bursts can be caused by exogenous phenomena and are indicative of burgeoning popularity, leveraging cross-platform social media data is valuable for predicting bursts within a single social media platform. An LSTM model is proposed in order to capture the temporal dependencies and associations based upon activity information. These volume predictions can also serve as a valuable input for our agent-based model. Finally, we conduct an exploration of Graph Convolutional Networks to investigate the value of weak-ties in classifying academic literature with the use of graph convolutional neural networks. Our experiments look at the results of treating weak-ties as if they were strong-ties to determine if that assumption improves performance. We also examine how node removal affects prediction accuracy by selecting nodes according to different centrality measures. These experiments provide insight for which nodes are most important for the performance of targeted graph convolutional networks. Graph Convolutional Networks are important in the social network context as the sociological and anthropological concept of \u27homophily\u27 allows for the method to use network associations in assisting the attribute predictions in a social network

    It’s more about the Content than the Users! The Influence of Social Broadcasting on Stock Markets

    Get PDF
    Social broadcasting networks facilitate the public exchange of information and contain a large amount of stock-related information. This data is increasingly analyzed by research and practice to predict stock market developments. Insights from social broadcasting networks are used to support the decision-making process of investors and are integrated into automatic trading algorithms to react quickly to broadcasted information. However, a comprehensive understanding about the influence of social broadcasting networks on stock markets is missing. In this study, we address this gap by conceptualizing and empirically testing a model incorporating three dimensions of social broadcasting networks: users, messages, and discussion. We analyze 1.84 million stock-related Twitter messages concerning the S&P 100 companies between January and April 2014 and corresponding intraday stock market data from NYSE and NASDAQ. Our research model is constructed applying factor analyses and tested using a fixed effects panel analysis. The results show that the influence of social broadcasting on stock markets is driven by the message and discussion dimensions whereas the user dimension has no significant influence. Specifically, the influence of user mentions, financial sentiment, discussion reach, and discussion volume has the largest impact and should carefully be considered by investors making trading decisions
    • …
    corecore