373 research outputs found

    Architecting Efficient Data Centers.

    Full text link
    Data center power consumption has become a key constraint in continuing to scale Internet services. As our society’s reliance on “the Cloud” continues to grow, companies require an ever-increasing amount of computational capacity to support their customers. Massive warehouse-scale data centers have emerged, requiring 30MW or more of total power capacity. Over the lifetime of a typical high-scale data center, power-related costs make up 50% of the total cost of ownership (TCO). Furthermore, the aggregate effect of data center power consumption across the country cannot be ignored. In total, data center energy usage has reached approximately 2% of aggregate consumption in the United States and continues to grow. This thesis addresses the need to increase computational efficiency to address this grow- ing problem. It proposes a new classes of power management techniques: coordinated full-system idle low-power modes to increase the energy proportionality of modern servers. First, we introduce the PowerNap server architecture, a coordinated full-system idle low- power mode which transitions in and out of an ultra-low power nap state to save power during brief idle periods. While effective for uniprocessor systems, PowerNap relies on full-system idleness and we show that such idleness disappears as the number of cores per processor continues to increase. We expose this problem in a case study of Google Web search in which we demonstrate that coordinated full-system active power modes are necessary to reach energy proportionality and that PowerNap is ineffective because of a lack of idleness. To recover full-system idleness, we introduce DreamWeaver, architectural support for deep sleep. DreamWeaver allows a server to exchange latency for full-system idleness, allowing PowerNap-enabled servers to be effective and provides a better latency- power savings tradeoff than existing approaches. Finally, this thesis investigates workloads which achieve efficiency through methodical cluster provisioning techniques. Using the popular memcached workload, this thesis provides examples of provisioning clusters for cost-efficiency given latency, throughput, and data set size targets.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91499/1/meisner_1.pd

    NUMASK: High Performance Scalable Skip List for NUMA

    Get PDF
    This paper presents NUMASK, a skip list data structure specifically designed to exploit the characteristics of Non-Uniform Memory Access (NUMA) architectures to improve performance. NUMASK deploys an architecture around a concurrent skip list so that all metadata accesses (e.g., traversals of the skip list index levels) read and write memory blocks allocated in the NUMA zone where the thread is executing. To the best of our knowledge, NUMASK is the first NUMA-aware skip list design that goes beyond merely limiting the performance penalties introduced by NUMA, and leverages the NUMA architecture to outperform state-of-the-art concurrent high-performance implementations. We tested NUMASK on a four-socket server. Its performance scales for both read-intensive and write-intensive workloads (tested up to 160 threads). In write-intensive workload, NUMASK shows speedups over competitors in the range of 2x to 16x

    When Private Blockchain Meets Deterministic Database

    Full text link
    Private blockchain as a replicated transactional system shares many commonalities with distributed database. However, the intimacy between private blockchain and deterministic database has never been studied. In essence, private blockchain and deterministic database both ensure replica consistency by determinism. In this paper, we present a comprehensive analysis to uncover the connections between private blockchain and deterministic database. While private blockchains have started to pursue deterministic transaction executions recently, deterministic databases have already studied deterministic concurrency control protocols for almost a decade. This motivates us to propose Harmony, a novel deterministic concurrency control protocol designed for blockchain use. We use Harmony to build a new relational blockchain, namely HarmonyBC, which features low abort rates, hotspot resiliency, and inter-block parallelism, all of which are especially important to disk-oriented blockchain. Empirical results on Smallbank, YCSB, and TPC-C show that HarmonyBC offers 2.0x to 3.5x throughput better than the state-of-the-art private blockchains

    OpLog: a library for scaling update-heavy data structures

    Get PDF
    Existing techniques (e.g., RCU) can achieve good multi-core scaling for read-mostly data, but for update-heavy data structures only special-purpose techniques exist. This paper presents OpLog, a general-purpose library supporting good scalability for update-heavy data structures. OpLog achieves scalability by logging each update in a low-contention per-core log; it combines logs only when required by a read to the data structure. OpLog achieves generality by logging operations without having to understand them, to ease application to existing data structures. OpLog can further increase performance if the programmer indicates which operations can be combined in the logs. An evaluation shows how to apply OpLog to three update-heavy Linux kernel data structures. Measurements on a 48-core AMD server show that the result significantly improves the performance of the Apache web server and the Exim mail server under certain workloads

    The Homeostasis Protocol: Avoiding Transaction Coordination Through Program Analysis

    Get PDF
    Datastores today rely on distribution and replication to achieve improved performance and fault-tolerance. But correctness of many applications depends on strong consistency properties - something that can impose substantial overheads, since it requires coordinating the behavior of multiple nodes. This paper describes a new approach to achieving strong consistency in distributed systems while minimizing communication between nodes. The key insight is to allow the state of the system to be inconsistent during execution, as long as this inconsistency is bounded and does not affect transaction correctness. In contrast to previous work, our approach uses program analysis to extract semantic information about permissible levels of inconsistency and is fully automated. We then employ a novel homeostasis protocol to allow sites to operate independently, without communicating, as long as any inconsistency is governed by appropriate treaties between the nodes. We discuss mechanisms for optimizing treaties based on workload characteristics to minimize communication, as well as a prototype implementation and experiments that demonstrate the benefits of our approach on common transactional benchmarks

    Energy Demand Response for High-Performance Computing Systems

    Get PDF
    The growing computational demand of scientific applications has greatly motivated the development of large-scale high-performance computing (HPC) systems in the past decade. To accommodate the increasing demand of applications, HPC systems have been going through dramatic architectural changes (e.g., introduction of many-core and multi-core systems, rapid growth of complex interconnection network for efficient communication between thousands of nodes), as well as significant increase in size (e.g., modern supercomputers consist of hundreds of thousands of nodes). With such changes in architecture and size, the energy consumption by these systems has increased significantly. With the advent of exascale supercomputers in the next few years, power consumption of the HPC systems will surely increase; some systems may even consume hundreds of megawatts of electricity. Demand response programs are designed to help the energy service providers to stabilize the power system by reducing the energy consumption of participating systems during the time periods of high demand power usage or temporary shortage in power supply. This dissertation focuses on developing energy-efficient demand-response models and algorithms to enable HPC system\u27s demand response participation. In the first part, we present interconnection network models for performance prediction of large-scale HPC applications. They are based on interconnected topologies widely used in HPC systems: dragonfly, torus, and fat-tree. Our interconnect models are fully integrated with an implementation of message-passing interface (MPI) that can mimic most of its functions with packet-level accuracy. Extensive experiments show that our integrated models provide good accuracy for predicting the network behavior, while at the same time allowing for good parallel scaling performance. In the second part, we present an energy-efficient demand-response model to reduce HPC systems\u27 energy consumption during demand response periods. We propose HPC job scheduling and resource provisioning schemes to enable HPC system\u27s emergency demand response participation. In the final part, we propose an economic demand-response model to allow both HPC operator and HPC users to jointly reduce HPC system\u27s energy cost. Our proposed model allows the participation of HPC systems in economic demand-response programs through a contract-based rewarding scheme that can incentivize HPC users to participate in demand response
    • …
    corecore