7,187 research outputs found

    Benefits of Spatial Regulation in a Multispecies System

    Get PDF
    Spatial heterogeneity in multispecies systems affects both ecological interactions and the composition of harvest. A bioeconomic model is used to analyze the nonselective harvest of two stocks with generalized ecological interaction and different persistent distributions across two spatial strata. Harvester response to aggregate effort controls is shown to partially dissipate rents relative to the case where the spatial distribution of effort can be specified. Numerical solutions for time paths of spatial (first-best) and aggregate (secondbest) input constraints indicate factors affecting their relative efficiency. In the scenarios studied, benefits of spatial specificity range from 0 to 15% of total net present value (NPV), depending upon the spatial correlation of stocks, their relative growth rates and prices, and the cost gradient across space. The benefits of spatial regulation are also heightened by the presence of ecological interaction, especially predator-prey dynamics.Bycatch, multispecies system, second-best regulation, spatial, Q20, Q22, Q28, Resource /Energy Economics and Policy,

    Biological control via "ecological" damping: An approach that attenuates non-target effects

    Get PDF
    In this work we develop and analyze a mathematical model of biological control to prevent or attenuate the explosive increase of an invasive species population in a three-species food chain. We allow for finite time blow-up in the model as a mathematical construct to mimic the explosive increase in population, enabling the species to reach "disastrous" levels, in a finite time. We next propose various controls to drive down the invasive population growth and, in certain cases, eliminate blow-up. The controls avoid chemical treatments and/or natural enemy introduction, thus eliminating various non-target effects associated with such classical methods. We refer to these new controls as "ecological damping", as their inclusion dampens the invasive species population growth. Further, we improve prior results on the regularity and Turing instability of the three-species model that were derived in earlier work. Lastly, we confirm the existence of spatio-temporal chaos

    Modeling population dynamics and economic growth as competing species: An application to CO2 global emissions

    Get PDF
    Since the beginning of the last century the world is experiencing an important demographic transition, which will probably impact on economic growth. Many demographers and social scientists are trying to understand the key drivers of such transition as well as its profound implications. A correct understanding will help to predict other important trends of the world primary energy demand and the carbon emission to the atmosphere, which may be leading to an important climate change. This paper proposes a set of coupled differential equations to describe the changes of population, gross domestic product, primary energy consumption and carbon emissions, modeled as competing-species as in Lokta-Volterra prey-predator relations. The predator–prey model is well known in the biological, ecological and environmental literature and has also been applied successfully in other fields. This model proposes a new and simple conceptual explanation of the interactions and feedbacks among the principal driving forces leading to the present transition. The estimated results for the temporal evolution of world population, gross domestic product, primary energy consumption and carbon emissions are calculated from year 1850 to year 2150. The calculated scenarios are in good agreement with common world data and projections for the next 100 years.Population dynamics, economic growth, primary energy consumption, carbon emission model, Lokta-Volterra Equations, Prey-predator model.

    Analysis of a spatial Lotka-Volterra model with a finite range predator-prey interaction

    Full text link
    We perform an analysis of a recent spatial version of the classical Lotka-Volterra model, where a finite scale controls individuals' interaction. We study the behavior of the predator-prey dynamics in physical spaces higher than one, showing how spatial patterns can emerge for some values of the interaction range and of the diffusion parameter.Comment: 7 pages, 7 figure

    A Modified Holling-Tanner Model in Stochastic Environment

    Get PDF
    Recently, a modified version of the so called Holling-Tannermodel isintroduced in the ecological literature. A detailed account of the deterministic dynamicsof this model is presented. The growth rates of the prey and predator are then perturbedby Gaussian white noises to take into account the effect of fluctuating environment. Theresulting stochastic model is cultured by the technique of statistical linearization andcriteria for non-equilibrium fluctuation and stability arederived. Numerical simulationsare carried out. The implications of our analytical findingsare addressed critically
    • …
    corecore