883 research outputs found

    A Framework for Uplink Intercell Interference Modeling with Channel-Based Scheduling

    Full text link
    This paper presents a novel framework for modeling the uplink intercell interference (ICI) in a multiuser cellular network. The proposed framework assists in quantifying the impact of various fading channel models and state-of-the-art scheduling schemes on the uplink ICI. Firstly, we derive a semianalytical expression for the distribution of the location of the scheduled user in a given cell considering a wide range of scheduling schemes. Based on this, we derive the distribution and moment generating function (MGF) of the uplink ICI considering a single interfering cell. Consequently, we determine the MGF of the cumulative ICI observed from all interfering cells and derive explicit MGF expressions for three typical fading models. Finally, we utilize the obtained expressions to evaluate important network performance metrics such as the outage probability, ergodic capacity, and average fairness numerically. Monte-Carlo simulation results are provided to demonstrate the efficacy of the derived analytical expressions.Comment: IEEE Transactions on Wireless Communications, 2013. arXiv admin note: substantial text overlap with arXiv:1206.229

    An Analytical Framework for Heterogeneous Partial Feedback Design in Heterogeneous Multicell OFDMA Networks

    Full text link
    The inherent heterogeneous structure resulting from user densities and large scale channel effects motivates heterogeneous partial feedback design in heterogeneous networks. In such emerging networks, a distributed scheduling policy which enjoys multiuser diversity as well as maintains fairness among users is favored for individual user rate enhancement and guarantees. For a system employing the cumulative distribution function based scheduling, which satisfies the two above mentioned desired features, we develop an analytical framework to investigate heterogeneous partial feedback in a general OFDMA-based heterogeneous multicell employing the best-M partial feedback strategy. Exact sum rate analysis is first carried out and closed form expressions are obtained by a novel decomposition of the probability density function of the selected user's signal-to-interference-plus-noise ratio. To draw further insight, we perform asymptotic analysis using extreme value theory to examine the effect of partial feedback on the randomness of multiuser diversity, show the asymptotic optimality of best-1 feedback, and derive an asymptotic approximation for the sum rate in order to determine the minimum required partial feedback.Comment: To appear in IEEE Trans. on Signal Processin

    Performance Analysis of Heterogeneous Feedback Design in an OFDMA Downlink with Partial and Imperfect Feedback

    Full text link
    Current OFDMA systems group resource blocks into subband to form the basic feedback unit. Homogeneous feedback design with a common subband size is not aware of the heterogeneous channel statistics among users. Under a general correlated channel model, we demonstrate the gain of matching the subband size to the underlying channel statistics motivating heterogeneous feedback design with different subband sizes and feedback resources across clusters of users. Employing the best-M partial feedback strategy, users with smaller subband size would convey more partial feedback to match the frequency selectivity. In order to develop an analytical framework to investigate the impact of partial feedback and potential imperfections, we leverage the multi-cluster subband fading model. The perfect feedback scenario is thoroughly analyzed, and the closed form expression for the average sum rate is derived for the heterogeneous partial feedback system. We proceed to examine the effect of imperfections due to channel estimation error and feedback delay, which leads to additional consideration of system outage. Two transmission strategies: the fix rate and the variable rate, are considered for the outage analysis. We also investigate how to adapt to the imperfections in order to maximize the average goodput under heterogeneous partial feedback.Comment: To appear in IEEE Trans. on Signal Processin

    Adaptive radio resource management schemes for the downlink of the OFDMA-based wireless communication systems

    Get PDF
    Includes bibliographical references.Due to its superior characteristics that make it suitable for high speed mobile wireless systems OFDMA has been adopted by next generation broadband wireless standards including Worldwide Interoperability for Microwave Access (WiMAX) and Long Term Evolution – Advanced (LTE-A). Intelligent and adaptive Radio Resource Management (RRM) schemes are a fundamental tool in the design of wireless systems to be able to fully and efficiently utilize the available scarce resources and be able to meet the user data rates and QoS requirements. Previous works were only concerned with maximizing system efficiency and thus used opportunistic algorithms that allocate resources to users with the best opportunities to optimize system capacity. Thus, only those users with good channel conditions were considered for resource allocation and users in bad channel conditions were left out to starve of resources. The main objective of our study is to design adaptive radio resource allocation (RRA) algorithms that distribute the scarce resources more fairly among network users while efficiently using the resources to maximize system throughput. Four scheduling algorithms have been formulated and analysed based on fairness, throughputs and delay. This was done for users demanding different services and QoS requirements. Two of the scheduling algorithms, Maximum Sum Rate (MSR) and Round Robin (RR) are used respectively, as references to analyze throughput and fairness among network users. The other two algorithms are Proportional Fair Scheduling (PFS) and Margin Adaptive Scheduling Scheme (MASS)

    Resource allocation for transmit hybrid beamforming in decoupled millimeter wave multiuser-MIMO downlink

    Get PDF
    This paper presents a study on joint radio resource allocation and hybrid precoding in multicarrier massive multiple-input multiple-output communications for 5G cellular networks. In this paper, we present the resource allocation algorithm to maximize the proportional fairness (PF) spectral efficiency under the per subchannel power and the beamforming rank constraints. Two heuristic algorithms are designed. The proportional fairness hybrid beamforming algorithm provides the transmit precoder with a proportional fair spectral efficiency among users for the desired number of radio-frequency (RF) chains. Then, we transform the number of RF chains or rank constrained optimization problem into convex semidefinite programming (SDP) problem, which can be solved by standard techniques. Inspired by the formulated convex SDP problem, a low-complexity, two-step, PF-relaxed optimization algorithm has been provided for the formulated convex optimization problem. Simulation results show that the proposed suboptimal solution to the relaxed optimization problem is near-optimal for the signal-to-noise ratio SNR <= 10 dB and has a performance gap not greater than 2.33 b/s/Hz within the SNR range 0-25 dB. It also outperforms the maximum throughput and PF-based hybrid beamforming schemes for sum spectral efficiency, individual spectral efficiency, and fairness index
    • …
    corecore