2,234 research outputs found

    Investigation of tool geometry effect and penetration strategies on cutting forces during thread milling

    Get PDF
    The application of thread milling is increasing in industry because of its inherent advantages over other thread cutting techniques. The objective of this study is to investigate the effect of milling cutter tool geometry on cutting forces during thread milling. The proposed method can compare the performance of milling cutters in spite of the different number of tooth. The best thread milling cutter among the studied tools was determined from the cutting forces point of view. Furthermore, this study also pinpoints the best penetration strategy that provides minimum cutting forces. Lower cutting force variations will lead to fewer vibrations of the tool which in turn will produce accurate part.Postdoc de V Sharma financé par la région Bourgogn

    A novel simulation methodology for orthogonal cryogenic machining with CFD spray cooling integration

    Get PDF
    The performance of cryogenic machining depends on the effectiveness of the heat transfer between the coolant jet and the chip in the cutting area because it affects the material temperature and the mechanical properties of the chip. This is a complex multi-physics problem because the solid deformation depends on the thermal and fluid–dynamic interaction with the cryogenic droplets generated by the atomization of the coolant jet. Within this context, this work applies an innovative methodology based on computational fluid dynamics to simulate the cutting process accounting for the interaction with the cryogenic jet. The proposed approach does not require empirical correlations since it integrates a predictive machining analytical model with Conjugate Heat Transfer CFD simulation and spray modelling to accurately estimate the heat transfer process accounting for the cooling effect of the impinging droplets. Complete Ti6Al4V dry and cryogenic cooled orthogonal cutting simulations were performed and results were compared with literature experimental data and state-of-the-art Finite Element Modelling simulations. The proposed methodology correctly estimates the cutting forces to vary cutting velocity and depth. Average errors in the resultant force estimation are 11.85% in dry and 14.4% in cryogenic cutting. Moreover, the experimental increase of the cutting force due to cooling is better estimated by the proposed approach with respect to FEM simulations. Thanks to the results accuracy and reduced computational costs, the proposed methodology could improve the understanding and the design of this innovative machining technology

    Multi-objective optimization for sustainable turning Ti6Al4V alloy using grey relational analysis (GRA) based on analytic hierarchy process (AHP).

    Get PDF
    Sustainable machining necessitates energy-efficient processes, longer tool lifespan, and greater surface integrity of the products in modern manufacturing. However, when considering Ti6Al4V alloy, these objectives turn out to be difficult to achieve as titanium alloys pose serious machinability challenges, especially at elevated temperatures. In this research, we investigate the optimal machining parameters required for turning of Ti6Al4V alloy. Turning experiments were performed to optimize four response parameters, i.e., specific cutting energy (SCE), wear rate (R), surface roughness (Ra), and material removal rate (MRR) with uncoated H13 carbide inserts in the dry cutting environment. Grey relational analysis (GRA) combined with the analytic hierarchy process (AHP) was performed to develop a multi-objective function. Response surface optimization was used to optimize the developed multi-objective function and determine the optimal cutting condition. As per the ANOVA, the interaction of feed rate and cutting speed (f Ă— V) was found to be the most significant factor influencing the grey relational grade (GRG) of the multi-objective function. The optimized machining conditions increased the MRR and tool life by 34% and 7%, whereas, reducing the specific cutting energy and surface roughness by 6% and 2% respectively. Using Taguchi-based GRA by analytic hierarchy process (AHP) weights method, the benefits of high-speed machining Ti6Al4V through multi-response optimization were achieved

    MICRO MILLING OF METALLIC MATERIALS - A BRIEF OVERVIEW

    Get PDF
    Micro milling is an important process of mechanical micromachining, with practical application in aerospace, automotive, mould and die, biomedical, military and microelectronics packaging industries. This article will give a brief overview of the effects and conditions of micro milling with an emphasis on minimum chip thickness, size effect, cutting forces, cutting temperature, tool wear and tool failure, burr formation and surface quality. The case study presented in the present paper refers to the micro milling of an aluminium alloy

    The fuzzy-nets based approach in predicting the cutting power of end milling operations

    Get PDF
    Process planning is a major determinant of manufacturing cost. The selection of machining parameters is an important element of process planning. The development of a utility to show the cutting power on-line would be helpful to programmers and process planners in selecting machining parameters. The relationship between the cutting power and the machining parameters is nonlinear. Presently there is no accurate or simple algorithm to calculate the required cutting power for a selected set of parameters. Although machining data handbooks, machinability data systems, and machining databases have been developed to recommend machining parameters for efficient machining, they are basically for general reference and hard to use as well;In this research, a self-organizing fuzzy-nets optimization system was developed to generate a knowledge bank that can show the required cutting power on-line for a short length of time in an NC verifier. The fuzzy-nets system (FNS) utilizes a five-step self-learning procedure. A generic FNS program consisting of fuzzification and defuzzification modules was implemented in the C++ programming language to perform the procedure. The FNS was assessed before an actual experiment was set up to collect data;The performance of the FNS was then examined for end milling operations on a Fadal VMC40 vertical machining center. The cutting force signals were measured by a three-component dynamometer mounted on the table of the Fadal CNC machine with the workpiece mounted on it. Amplified signals were collected by a personal computer on which an Omega DAS-1401 analog-to-digital (A/D) converter was installed to sample the data on-line. Data sets were collected to train and test the system. The results showed that the FNS possessed a satisfactory range of accuracy with the intended applications of the model. The values of cutting power predicted by the FNS were more accurate than the formula values. Compared to the FNS system, dynamometers and amplifiers are very expensive. Thus, most of them could be replaced with the FNS

    Analysis, optimization, FE simulation of micro-cutting processes and integration between Machining and Additive Manufacturing.

    Get PDF
    La seguente Tesi di Dottorato riguarda i processi di Micro-Machining (MM) applicati su materiali ottenuti per fabbricazione additiva. I processi MM sono un insieme di tecnologie di produzione utilizzate per fabbricare componenti o realizzare features di piccole dimensioni. In generale, i processi di taglio sono caratterizzati da un'interazione meccanica tra un pezzo e un utensile che avviene lungo una determinata traiettoria. Il contatto determina una rottura del materiale lungo un percorso definito, ottenendo diverse forme del pezzo. Più precisamente, la denominazione di microlavorazione indica solo le lavorazioni di taglio eseguite utilizzando un utensile di diametro inferiore a 1 mm. La riduzione della scala dimensionale del processo introduce alcune criticità non presenti negli analoghi processi su scala convenzionale, come l'effetto dimensionale, la formazione di bave, la rapida usura dell'utensile, le forze di taglio superiori alle attese e l'eccentricità del moto dell'utensile. Negli ultimi decenni, diversi ricercatori hanno affrontato problemi relativi alla microlavorazione, ma pochi di loro si sono concentrati sulla lavorabilità dei materiali prodotti per Additive Manufacturing (AM). L’AM è un insieme di processi di fabbricazione strato per strato che possono essere impiegati con successo utilizzando polimeri, ceramica e metalli. L'AM dei metalli si sta rapidamente diffondendo nella produzione industriale trovando applicazioni in diversi rami, come l'industria aerospaziale e biomedica. D’altro canto, la qualità del prodotto finale non è comparabile con gli standard ottenibili mediante i metodi convenzionali di rimozione del materiale. Lo svantaggio principale dei componenti realizzati mediante AM è la bassa qualità della finitura superficiale e l'elevata rugosità; pertanto, sono solitamente necessari ulteriori trattamenti superficiali post-processo per adeguare le superfici del prodotto ai requisiti di integrità superficiale. L'integrazione tra le due tecnologie manifatturiere offre opportunità rilevanti, ma la necessità di ulteriori studi e indagini è evidenziata dalla mancanza di pubblicazioni su questo argomento. Questa ricerca mira ad esplorare diversi problemi connessi alla microlavorazione di leghe metalliche prodotte mediante AM. Le prove sperimentali sono state eseguite utilizzando il centro di lavoro ultrapreciso a 5 assi “KERN Pyramid Nano”, mentre i campioni AM sono stati forniti da aziende e gruppi di ricerca. L'attrezzatura sperimentale è stata predisposta per eseguire la micro-fresatura e per monitorare il processo in linea misurando la forza di taglio. Il comportamento di rimozione del materiale è stato studiato e descritto per mezzo di modelli analitici e simulazioni FEM. I metodi FE sono stati utilizzati anche per eseguire un confronto tra le forze di taglio previste e i carichi sperimentali, con lo scopo finale di affinare la legge di flusso dei materiali lavorati. La ricerca futura sarà focalizzata sulla simulazione FE dell'usura dell'utensile e dell'integrità della superficie del pezzo.This thesis is focused on Micro-Machining (MM) processes applied on Additively Manufactured parts. MM processes are a class of manufacturing technology designed to produce small size components. In general, cutting processes are characterized by a mechanical interaction between a workpiece and a tool. The contact determines a material breakage along a defined path, obtaining different workpiece shapes. More specifically, the micro-machining designation indicates only the cutting processes performed by using a tool with a diameter lower than 1 mm. The reduction of the process scale introduces some critical issues, such as size effect, burr formation, rapid tool wear, higher than expected cutting forces and tool run-out. In the last decades, several researchers have tackled micro-machining related issues, but few of them focused on workability of Additive Manufactured materials. Additive Manufacturing (AM) is a collection of layer-by-layer building processes which can be successfully employed using polymers, ceramics and metals. AM of metals is rapidly spreading throughout the industrial manufacturing finding applications in several branches, such as aerospace and biomedical industries. Moreover, the final product quality is not comparable with the standards achievable through the conventional subtractive material removal methods. The main drawback of additively manufactured components in metals is the low quality of the surface finish and the high surface roughness, therefore further post-process surface treatments are usually required to finish and to refine the surfaces of the build product. The embedding between the two technologies offers relevant opportunities, but the necessity of further studies and investigation is highlighted by the lack of publication about this topic. This research aimed to explore several micro-machining issues with regards to Additive Manufactured metals. Experimental tests were performed by using the ultraprecision 5-axes machining center “KERN Pyramid Nano”, while the AM samples were provided by companies and research groups. The experimental equipment was set-up to perform micro-milling and to monitor the process online by measuring the cutting force. The material removal behavior was investigated and described by means of analytical models and FEM simulations. FE methods were employed also to perform a comparison between the predicted cutting forces and the experimental loads, with the final purpose of refining the flow stress law of the machined materials. The future research will be focused on the FE simulation of the tool wear and the workpiece surface integrity by means of specific subroutines

    Simulation of Cutting Process – Modeling and Applications

    Get PDF

    ENHANCED SURFACE INTEGRITY WITH THERMALLY STABLE RESIDUAL STRESS FIELDS AND NANOSTRUCTURES IN CRYOGENIC PROCESSING OF TITANIUM ALLOY TI-6AL-4V

    Get PDF
    Burnishing is a chipless finishing process used to improve surface integrity by severe plastic deformation (SPD) of surface asperities. As surface integrity in large measure defines the functional performance and fatigue life of aerospace alloys, burnishing is thus a means of increasing the fatigue life of critical components, such as turbine and compressor blades in gas turbine engines. Therefore, the primary objective of this dissertation is to characterize the burnishing-induced surface integrity of Ti-6Al-4V alloy in terms of the implemented processing parameters. As the impact of cooling mechanisms on surface integrity from SPD processing is largely unexplored, a particular emphasis was placed upon evaluating the influence of cryogenic cooling with liquid nitrogen in comparison to more conventional methodologies. Analysis of numerical and experimental results reveals that burnishing facilitates grain refinement via continuous dynamic recrystallization. Application of LN2 during SPD processing of Ti-6Al-4V alloy suppresses the growth of new grains, leading to the formation of near-surface nanostructures which exhibit increased microhardness and compressive residual stress fields. This is particularly true in cryogenic multipass burnishing, where successive tool passes utilizing lower working pressures generate thermally stable work hardened surface layers, uniform nano-level surface finishes, and significantly deeper layers of compressive residual stresses

    Development and analysis of tool wear and energy consumption maps for turning of titanium alloy (Ti6Al4V).

    Get PDF
    Machine tools are the main source of electric power consumption in industrial operations. Thus, in manufacturing, energy-efficient and cleaner production methods are preferred to mitigate production costs. Titanium alloys are known for their poor machinability and are generally characterized by low tool life, high energy consumption and poor surface quality due to its unique physical and mechanical properties. This research aims to evaluate the tool wear rate (R) and the specific cutting energy (SCE) at varying cutting conditions by developing tool wear and energy maps using unified cutting tests. Uncoated H13A tools were used during single-point turning of Ti-6Al-4V alloy by employing Full Factorial Design of Experiments. Based on experimental data, comprehensive process maps were developed for monitoring wear and energy data. These maps showed regions of (low moderate and high) wear and specific energy consumption. It was observed that while machining Ti-6Al-4V alloy the recommended cutting condition (V=100 m/min and f =0.16 mm/rev) enhances the tool life and reduces energy consumption together with high material removal rate. It was also deduced that instead of low speed, using a higher speed of 125 m/min will increase MRR by 127 % and SCE by 16 %, which is more feasible in a production environment. From tool-chip contact length and chip morphology analysis, a strong correlation indicated the reason behind the occurrence of various zones on the maps. It has been found that high wear and energy zone occurred due to the larger contact length and higher chip compression ratio when machining at high speed. The developed maps can be used to help the manufacturers achieve the economic and energy-efficient goal of machining
    • …
    corecore