33 research outputs found

    A KLM Perspective on Defeasible Reasoning for Description Logics

    Get PDF
    In this paper we present an approach to defeasible reasoning for the description logic ALC. The results discussed here are based on work done by Kraus, Lehmann and Magidor (KLM) on defeasible conditionals in the propositional case. We consider versions of a preferential semantics for two forms of defeasible subsumption, and link these semantic constructions formally to KLM-style syntactic properties via representation results. In addition to showing that the semantics is appropriate, these results pave the way for more effective decision procedures for defeasible reasoning in description logics. With the semantics of the defeasible version of ALC in place, we turn to the investigation of an appropriate form of defeasible entailment for this enriched version of ALC. This investigation includes an algorithm for the computation of a form of defeasible entailment known as rational closure in the propositional case. Importantly, the algorithm relies completely on classical entailment checks and shows that the computational complexity of reasoning over defeasible ontologies is no worse than that of the underlying classical ALC. Before concluding, we take a brief tour of some existing work on defeasible extensions of ALC that go beyond defeasible subsumption

    A reconstruction of the multipreference closure

    Full text link
    The paper describes a preferential approach for dealing with exceptions in KLM preferential logics, based on the rational closure. It is well known that the rational closure does not allow an independent handling of the inheritance of different defeasible properties of concepts. Several solutions have been proposed to face this problem and the lexicographic closure is the most notable one. In this work, we consider an alternative closure construction, called the Multi Preference closure (MP-closure), that has been first considered for reasoning with exceptions in DLs. Here, we reconstruct the notion of MP-closure in the propositional case and we show that it is a natural variant of Lehmann's lexicographic closure. Abandoning Maximal Entropy (an alternative route already considered but not explored by Lehmann) leads to a construction which exploits a different lexicographic ordering w.r.t. the lexicographic closure, and determines a preferential consequence relation rather than a rational consequence relation. We show that, building on the MP-closure semantics, rationality can be recovered, at least from the semantic point of view, resulting in a rational consequence relation which is stronger than the rational closure, but incomparable with the lexicographic closure. We also show that the MP-closure is stronger than the Relevant Closure.Comment: 57 page
    corecore