1,933 research outputs found

    Grafting Hypersequents onto Nested Sequents

    Full text link
    We introduce a new Gentzen-style framework of grafted hypersequents that combines the formalism of nested sequents with that of hypersequents. To illustrate the potential of the framework, we present novel calculi for the modal logics K5\mathsf{K5} and KD5\mathsf{KD5}, as well as for extensions of the modal logics K\mathsf{K} and KD\mathsf{KD} with the axiom for shift reflexivity. The latter of these extensions is also known as SDL+\mathsf{SDL}^+ in the context of deontic logic. All our calculi enjoy syntactic cut elimination and can be used in backwards proof search procedures of optimal complexity. The tableaufication of the calculi for K5\mathsf{K5} and KD5\mathsf{KD5} yields simplified prefixed tableau calculi for these logic reminiscent of the simplified tableau system for S5\mathsf{S5}, which might be of independent interest

    Elimination of Cuts in First-order Finite-valued Logics

    Get PDF
    A uniform construction for sequent calculi for finite-valued first-order logics with distribution quantifiers is exhibited. Completeness, cut-elimination and midsequent theorems are established. As an application, an analog of Herbrand’s theorem for the four-valued knowledge-representation logic of Belnap and Ginsberg is presented. It is indicated how this theorem can be used for reasoning about knowledge bases with incomplete and inconsistent information

    Analytic Tableaux for Simple Type Theory and its First-Order Fragment

    Full text link
    We study simple type theory with primitive equality (STT) and its first-order fragment EFO, which restricts equality and quantification to base types but retains lambda abstraction and higher-order variables. As deductive system we employ a cut-free tableau calculus. We consider completeness, compactness, and existence of countable models. We prove these properties for STT with respect to Henkin models and for EFO with respect to standard models. We also show that the tableau system yields a decision procedure for three EFO fragments

    The Varieties of Ought-implies-Can and Deontic STIT Logic

    Get PDF
    STIT logic is a prominent framework for the analysis of multi-agent choice-making. In the available deontic extensions of STIT, the principle of Ought-implies-Can (OiC) fulfills a central role. However, in the philosophical literature a variety of alternative OiC interpretations have been proposed and discussed. This paper provides a modular framework for deontic STIT that accounts for a multitude of OiC readings. In particular, we discuss, compare, and formalize ten such readings. We provide sound and complete sequent-style calculi for all of the various STIT logics accommodating these OiC principles. We formally analyze the resulting logics and discuss how the different OiC principles are logically related. In particular, we propose an endorsement principle describing which OiC readings logically commit one to other OiC readings

    Generating Schemata of Resolution Proofs

    Full text link
    Two distinct algorithms are presented to extract (schemata of) resolution proofs from closed tableaux for propositional schemata. The first one handles the most efficient version of the tableau calculus but generates very complex derivations (denoted by rather elaborate rewrite systems). The second one has the advantage that much simpler systems can be obtained, however the considered proof procedure is less efficient
    • …
    corecore