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Elimination of Cuts in
First-order Finite-valued Logics

By Matthias Baaz, Christian G. Fermüller and Richard Zach

Abstract: A uniform construction for sequent calculi for finite-valued first-order logics with dis-
tribution quantifiers is exhibited. Completeness, cut-elimination and midsequent theorems are
established. As an application, an analog of Herbrand’s theorem for the four-valued knowledge-
representation logic of Belnap and Ginsberg is presented. It is indicated how this theorem can
be used for reasoning about knowledge bases with incomplete and inconsistent information.

1 Introduction

Why elimination of cuts? Cut-elimination procedures play a central rôle in proof theoretic
investigations of logical calculi. Their importance lies in the fact that they are local procedures.
This is in contrast to the results obtained by proofs of cut-free completeness, which are global
(and do not take existing proofs into account). For the analysis of given proofs—and this
makes cut-elimination so important for computer science—a local procedure, which operates
on given data, is needed. It allows one to look at parts of proofs independently of others, e.g.,
making the assumptions of a proof explicit. Cut elimination is also essential for the extraction
of programs from proofs. The constructive nature of the cut elimination procedure ensures that
the extraction algorithm of a function encoded by a proof is primitive recursive, whereas cut-
free completeness properties (as in the case of analytic tableaux) only guarantees termination
of extraction algorithms. Cut elimination also provides a bound for the term complexity of the
cut-free proof, and consequently a bound on the complexity of the extracted function relative
to the complexity of the functions represented by primitive function symbols.

Why many-valued logics? Many-valued logics have enjoyed rising interest in recent years in
computer science. For instance, many-valued logics can be used to model knowledge bases, or
more accurately, epistemic states of knowledge. In the following, we will illustrate our results
with an example based on such a logic: Belnap [6] has introduced a logic with the truth values
false (f), unknown (u), contradictory (⊥) and true (t), corresponding to the epistemic status
of the given facts. Ginsberg [12] has extended the study of logics of this kind to the general
theory of logics over bilattices and uses it to model non-monotonic knowledge bases. Belnap’s
logic has recently been used for a representation of (possibly contradictory) knowledge and the
problem of knowledge revision and update in [17]. Bilattice logics also find applications in the
study of logic programming, see, e.g., [9, 10]. Another recent application of many-valued logics
is in the verification of switch-level circuit designs [16].

The success of a logic for use in the context of knowledge representation and reasoning
depends crucially on the availability of computational calculi for this logic. Without such calculi,
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the study of a logic in relation to its application in computer science and artificial intelligence is
destined to remain purely theoretical. In the case of many-valued logics, computational calculi
can be given.

Analytic calculi for many-valued logics have been known for quite some time. Sequent systems
similar to those presented here have also been introduced by Schröter [22], Rousseau [21],
Takahashi [25], and Carnielli [8]; equivalent tableaux formulations were given by Surma [24]
and Carnielli [7] (Hähnle’s work is based on the latter [13, 14, 15]). Calculi for automated
theorem proving in many-valued logics are also legion. Apart from Hähnle’s work on tableaux-
based theorem proving, various resolution methods have been proposed, e.g., by O’Hearn and
Stachniak [19] or Baaz and Fermüller [1, 2]. For more detailed surveys of the work done in
these areas see [15, 27].

We present here sequent calculi for arbitrary finite-valued first-order logics with distribution
quantifiers. These calculi are essentially the ones of [21] but differ from those of [25] (our rules
are more general, and also more compact) and [8] (which is a calculus dual to ours, cf. [4]).
First we establish soundness and completeness for this calculus. In Section 4 we give a cut-
elimination algorithm schema for this calculus modulo a parametric operator for reducing cuts
on composite formulas. In the usual proof of the Hauptsatz for classical logic, this operator
is fixed and defined by case distinction. We, however, give (in Section 5) a general method
based on the resolution principle for finding such reductions. This method is also applicable
to the classical case. It provides a uniform way to show that cut-elimination holds in systems
where any propositional connectives or distribution quantifiers (which are, of course, definable
in classical logic) are taken as primitive.

Our method can be extended so as to reduce the degree of the cut formula not only by
one, but to reduce it arbitrarily. This suggests the possibility of interactively reducing cuts of
higher complexity in one step. This may have an application for implementing cut-elimination
procedures, an undertaking thwarted until now due to its prohibitive complexity.

Finally, in Section 6, we give an analog of Herbrand’s Theorem for a first-order version of
Belnap’s logic and show how this can be used to extract information from proofs in the sequent
calculus.

2 Preliminaries

D e f i n i t i o n 2.1. A language L for a logic consists of countably many free variables, bound
variables, function symbols (including constants), predicate symbols, as well as propositional
connectives, quantifiers, and auxiliary symbols: “(”, “)”, “,”.

We use a, b, c, . . . to denote free variables; x, y, z, . . . to denote bound variables; P , Q,
R, . . . to denote predicate symbols; 2 to denote connectives; and Q to denote quantifiers.

Terms, subterms, formulas and subformulas are defined as usual. The degree of a formula is
its depth, more precisely:

d(A) =


0 if A is atomic
max{d(A1), . . . , d(An)}+ 1 if A ≡ 2(A1, . . . , An)
d(B) + 1 if A ≡ (Qx)A

D e f i n i t i o n 2.2. A matrix for a language L is given by:

1. a nonempty set of truth values V = {v1, . . . , vm} of size m,
2. an abstract algebra V with domain V of appropriate type: For every n-place connective 2

of L there is an associated truth function 2̃:V n → V , and
3. for every quantifier Q, an associated truth function Q̃:℘(V ) \ {∅} → V
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A language and a matrix for it together fully determine a logic L. L is said to be m-valued.

The intended meaning of a truth function for a propositional connective is analogous to
the two-valued case: Given formulas A1, . . . , An, which take the truth values w1, . . . , wn,
respectively, the truth value of 2(A1, . . . , An) is given by 2̃(w1, . . . , wn).

A truth function for quantifiers is a mapping from nonempty sets of truth values to truth
values: Given a quantified formula (Qx)F (x), such a set of truth values describes the situation
where the ground instances of F take exactly the truth values in this set as values under
a given interpretation. In other words, for a non-empty set M ⊆ V , (Qx)F (x) takes the
truth value Q̃(M) if, for every truth value v ∈ V , it holds that v ∈ M iff there is a domain
element d such that the truth value of F (d) is v. The set M is called the distribution of F .
This generalization of quantifiers dates back to [18]. Quantifiers of this type have been called
distribution quantifiers in [7].

Example 2.1. The matrix for Belnap’s logic consists of:

1. The set of truth values V = {f, u,⊥, t}. V carries the structure of a bilattice with two
partial orders ≤k and ≤t as follows: f <t u,⊥ <t t and u <k t, f <k ⊥.

t
↗ ↖

u ⊥
↖ ↗

f

2. The truth functions for the connectives ¬, ∧, ∨ (∧ and ∨ are the glb and lub in the order
≤t, respectively):

¬
t f
u u
⊥ ⊥
f t

∧ t u ⊥ f
t t u ⊥ f
u u u f f
⊥ ⊥ f ⊥ f
f f f f f

∨ t u ⊥ f
t t t t t
u t u t u
⊥ t t ⊥ ⊥
f t u ⊥ f

Furthermore, we have unary connectives Jw for every w ∈ V where Jw(u) = t if u = w
and Jw(u) = f otherwise.

3. In view of the application in Section 6, we introduce the quantifiers ∀ (classical for all)
and U (uniformity) defined by the following truth functions:

∀̃(W ) =
{

t if W = {t}
f otherwise

Ũ(W ) = lub≤k
(W )

D e f i n i t i o n 2.3. A structure M = 〈D,ΦM〉 for a language L (an L-structure) consists of
the following:

1. A non-empty set D, called the domain (elements of D are called individuals.
2. A mapping ΦM that satisfies the following:

(a) Each free variable of L is mapped to an element of D.
(b) Each n-ary function symbol f of L is mapped to a function fM:Dn → D, or to an

element of D if n = 0. Additionally, ΦM maps elements of D to themselves.
(c) Each n-ary predicate symbol P of L is mapped to a function PM:Dn → V , or to and

element of V if n = 0.
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D e f i n i t i o n 2.4. Let M be an L-structure. An assignment s is a mapping from the free
variables of L to individuals.

D e f i n i t i o n 2.5. An interpretation I = 〈M, s〉 is an L-structure M = 〈D,Φ〉 together with
an assignment s.

D e f i n i t i o n 2.6. Let I = 〈〈D,ΦM〉, s〉 be an interpretation. The mapping Φ can be ex-
tended in the obvious way to a mapping from terms to individuals:

1. If t is a free variable, then ΦI(t) = s(t).
2. If t is of the form f(t1, . . . , t2), where f is a function symbol of arity n and t1, . . . , tn are

terms, then ΦI(t) = fM
(
ΦI(t1), . . . , ΦI(tn)

)
.

D e f i n i t i o n 2.7. Given an interpretation I = 〈M, s〉, we define the valuation valI for for-
mulas F to be a mapping from formulas to truth values as follows:

1. If F is atomic, i.e., of the form P (t1, . . . , tn), where P is a predicate symbol of arity n
and t1, . . . , tn are terms, then valI(F ) = PM

(
ΦI(t1), . . . , ΦI(tn)

)
.

2. If the outermost logical symbol of F is a propositional connective 2 of arity n, i.e.,
F is of the form 2(F1, . . . , Fn), where F1, . . . , Fn are formulas, then valI(F ) =
2̃

(
valI(F1), . . . , valI(Fn)

)
.

3. If the outermost logical symbol of F is a quantifier Q, i.e., F is of the form (Qx)G(x),
then

valI(F ) = Q̃
(
{valIG(d) | d ∈ D}

)
.

3 Sequent calculi

D e f i n i t i o n 3.1. An (m-valued) sequent Γ is an m-tuple of finite sequences Γ(i) of formulas
written thus: Γ(1) | . . . | Γ(m). If Γ is a sequent, then Γ(i) denotes the i-th component of Γ .

If ∆ is a sequence of formulas and I ⊆ M = {1, . . . ,m} (or W ⊆ V ), we denote by [I:∆]
([W :∆]) the sequent whose i-th component is ∆ if i ∈ I (vi ∈ W ), and is empty otherwise.
For [{i, j, . . .}:∆] we write [i, j, . . . :∆]. If Γ and Γ ′ are sequents, then we write Γ, Γ ′ for the
sequent Γ(1), Γ

′
(1) | . . . | Γ(m), Γ

′
(m).

D e f i n i t i o n 3.2. Let I be an interpretation. I satisfies a sequent Γ , iff there is an i,
1 ≤ i ≤ m, s.t., for some formula F ∈ Γ(i), valI(F ) = vi. I is called a model of Γ and we write
I |= Γ .

Γ is called satisfiable, iff there is an interpretation I s.t. I |= Γ , and valid , iff for every
interpretation I, I |= Γ .

The above definition boils down to the interpretation of an m-sided sequent as a disjunction
of statements saying that a particular formula takes a particular truth value. Specifically, if a
formula A occurs in Γ(i), the interpretation is “A takes the value vi.” It is instructive to see
that this interpretation yields the usual interpretation in the two-valued case: there, a sequent
A1, . . . , Ar → B1, . . . , Bs is commonly read as being equivalent to (A1∧. . .∧Ar) ⊃ (B1∨. . .∨Bs).
By propositional logic, this is equivalent to ¬A1 ∨ . . .∨¬Ar ∨B1 ∨ . . .∨Bs, or in plain English:
either one of the Ai’s is false or one of the Bj ’s is true.

R e m a r k 3.1. It is also possible to interpret sequents in a dual way, namely: if a formula A
occurs in Γ(i), the interpretation is “A does not take the value vi.” Sequent calculi for this
semantics can also be uniformly obtained, they correspond to analytic tableaux [4, 27]
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D e f i n i t i o n 3.3. An introduction rule for a connective 2 at place i is a schema of the form:

〈Γ,∆2:i(j)〉j∈I

Γ, [i:2(A1, . . . , An)]
2:i

where the arity of 2 is n, I is a finite set, frm
(
∆2:i(j)

)
⊆ {A1, . . . , An} (where frm(∆) denotes

the set of formulas occurring in ∆) and the following condition holds:
Let I be an interpretation. Then the following are equivalent:

1. 2(A1, . . . , An) takes the truth value vi under I.
2. For j ∈ I, M satisfies the sequents ∆2:i(j).

It should be stressed that the introduction rules for a connective at a given place are far
from being unique: Let the expression Avl denote the statement “A takes the truth value
vl”. Then every introduction rule for 2(A1, . . . , An) at place i corresponds to a conjunction
of disjunctions of some Avl which is true iff 2(A1, . . . , An) takes the truth value vi (namely,∧k

j=1

∨m
l=1

∨
A∈∆2:i(j)(l)

Avl). This represents an i-th partial normal form in the sense of [20].
Any such partial normal form for 2(A1, . . . , An)vi will do.

In particular, the truth table for 2 immediately yields a complete conjunctive normal form,
the corresponding rule is as in Definition 3.3, with: I ⊆ V n is the set of all n-tuples j =
(w1, . . . , wn) of truth values such that 2̃(w1, . . . , wn) 6= vi; and ∆2:i(j)(l) = {Ak | 1 ≤ k ≤
n, vl 6= wk}.

A rule constructed this way can have up to mn−1 premises (if 2 takes the value vi only once
in the truth table), but standard methods for minimizing combinational functions, such as the
Quine-McCluskey procedure, can be used to find rules that are minimal w.r.t. the number of
premises and the number of formulas per premise. This procedure has been implemented in
the system MULTLOG [3]. For an analysis of upper bounds for the number of premises for
propositional and quantifier rules see [27, Ch. 1].

If a connective never takes a particular truth value vi, then the introduction rule at place i
is actually a weakening rule (see below).

Example 3.1. Consider the disjunction in Belnap’s logic: The partial normal forms

(A ∨B)f iff Af and Bf

(A ∨B)u iff (Af or Au) and (Bf or Bu) and (Au or Bu)
(A ∨B)⊥ iff (Af or A⊥) and (Bf or B⊥) and (A⊥ or B⊥)
(A ∨B)t iff At or Bt

yield the following introduction rules:

Γ, [f :A] Γ, [f :B]
Γ, [f :A ∨B]

∨:f
Γ, [f, u:A] Γ, [f, u:B] Γ, [u:A,B]

Γ, [u:A ∨B]
∨:u

Γ, [t:A,B]
Γ, [t:A ∨B]

∨:t
Γ, [f,⊥:A] Γ, [f,⊥:B] Γ, [⊥:A,B]

Γ, [⊥:A ∨B] ∨:⊥

The other rules are as follows:

Γ, [f :A,B]
Γ, [f :A ∧B]

∧:f
Γ, [t, u:A] Γ, [t, u:B] Γ, [u:A,B]

Γ, [u:A ∧B]
∧:u

Γ, [t:A] Γ, [t:B]
Γ, [t:A ∧B]

∧:t
Γ, [f,⊥:A] Γ, [f,⊥:B] Γ, [⊥:A,B]

Γ, [⊥:A ∧B] ∧:⊥
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Γ, [t:A]
Γ, [f :¬A]

¬:f
Γ, [u:A]

Γ, [u:¬A]
¬:u

Γ, [⊥:A]
Γ, [⊥:¬A] ¬:⊥

Γ, [f :A]
Γ, [t:¬A]

¬:t

Γ, [f :A]
Γ, [t: Jf (A)]

Jf :t
Γ, [u:A]

Γ, [t: Ju(A)]
Ju:t

Γ, [⊥:A]
Γ, [t: J⊥(A)]

J⊥:t
Γ, [t:A]

Γ, [t: Jt(A)]
Jt:t

Γ, [u,⊥, t:A]
Γ, [f : Jf (A)]

Jf :f
Γ, [f,⊥, t:A]
Γ, [f : Ju(A)]

Ju:f
Γ, [f, u, t:A]
Γ, [f : J⊥(A)]

J⊥:f
Γ, [f, u,⊥:A]
Γ, [f : Jt(A)]

Jt:f

The remaining rules (Jv:w) for v 6= w are weakenings at place w.

D e f i n i t i o n 3.4. An introduction rule for a quantifier Q at place i in the logic L is a schema
of the form:

〈Γ,∆Q:i(j)〉j∈I

Γ, [i: (Qx)A(x)]
Q:i

where I is a finite set, ∆Q:i(j)(k) ⊆ {A(α1), . . . , A(αq), A(τ1), . . . , A(τp)} (1 ≤ k ≤ m), the αr

are metavariables for free variables (the eigenvariables of the rule) satisfying the condition that
they do not occur in the lower sequent, the τs are metavariables for terms, and the following
condition holds:

For every interpretation I it holds that

1. If for all d1, . . . , dq ∈ D there are e1, . . . , ep ∈ D s.t.

I |= ∆Q:i(j){e1/τ1, . . . , ep/τp, d1/α1, . . . , dq/αq}

then valI
(
(Qx)A(x)

)
= vi.

2. If for all e1, . . . , ep ∈ D there are d1, . . . , dq ∈ D s.t.

I 6|= ∆Q:i(j){e1/τ1, . . . , ep/τp, d1/α1, . . . , dq/αq}

then valI
(
(Qx)A(x)

)
6= vi.

In the case of two-valued classical logic, we have the well-known introduction rules (at place
“true”) for ∀ and ∃:

Γ → ∆, A(α)
Γ → ∆, (∀x)A(x) ∀:t

Γ → ∆, A(τ)
Γ → ∆, (∃x)A(x) ∃:t

Here, as above, α and τ are metavariables standing for free variables and terms, respectively.
That is to say, in an actual proof A(α) is replaced by a formula A containing a free variable a
(in place of α), and A(τ) is replaced by a formula A containing a term t (in place of τ). The
“eigenvariable condition” imposed on ∀:> is that the free variable a must not occur in the
lower sequent. In the case of two-valued logic it is common to use a and t instead of α and τ
in the first place. In the general case considered here it is necessary to explicitly introduce
the metavariables α and τ in order to state the conditions on the rule in the above definition.
Intuitively, what the condition means is that the statements “for all domain elements d1, . . . ,
dq in place of the eigenvariables α1, . . . , αq, respectively, there are domain elements e1, . . . , ep

in place of the terms τ1, . . . , τp, respectively, so that the sequents ∆Q:i(j) are all true” implies
that “(Qx)A(x) takes the value vi,” and conversely, that “(Qx)A(x) takes the value vi” implies
that “there are domain elements e1, . . . , ep in place of the terms τ1, . . . , τp, respectively s.t.
for all domain elements d1, . . . , dq in place of the eigenvariables α1, . . . , αq, respectively, the
sequents ∆Q:i(j) are all true,” hold. In the case of two-valued logic this means that, for any
interpretation, (∀x)A(x) is true iff for all domain elements d, A(d) is true; (∃x)A(x) is true
iff there is some domain element e s.t. A(e) is true. The subtlety here is that it is required
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that there is a domain element and not a term (which evaluates to that domain element) for
(∃x)A(x) to be true. In an actual proof, however, τ is replaced by a term.

The truth function for a quantifier Q immediately yields introduction rules for place i in a way
similar to the method described above for connectives: Let I = {j ⊆ {v1, . . . , vm} | Q̃(j) 6= vi},
then the rule is given as in Definition 3.4, with ∆Q:i(j)(l) = {A(αj

w) | w ∈ j, w 6= vl} ∪ {A(τ j) |
vl ∈ V \ {j}}. Again, we emphasize that in general this is not the only possible rule.

Example 3.2. Consider the universal quantor ∀ for Belnap’s logic: (∀x)A(x) takes the value
t only if for all d ∈ D the instance A(d) takes t, and false otherwise, i.e., if there is a d ∈ D s.t.
A(d) takes a value among f , u, ⊥. We obtain the following rules:

Γ, [f, u,⊥:A(τ)]
Γ, [f : (∀x)A(x)]

∀:f
Γ, [t:A(α)]

Γ, [t: (∀x)A(x)] ∀:t

The remaining rules (∀:u) and (∀:⊥) are instances of weakening rules.
Similarly, we obtain rules for U:

Γ, [f :A(τ)] Γ, [f, u:A(α)]
Γ, [f : (Ux)A(x)]

U:f
Γ, [u:A(α)]

Γ, [u: (Ux)A(x)] U:u

Γ, [t:A(τ)] Γ, [t, u:A(α)]
Γ, [t: (Ux)A(x)] U:t

Γ, [f,⊥:A(τ)] Γ, [t,⊥:A(τ ′)]
Γ, [⊥: (Ux)A(x)] U:⊥

The sequents denoted by ∆ in the introduction rules for connectives and quantifiers are called
auxiliary sequents.

D e f i n i t i o n 3.5. A sequent calculus LM for a logic L is given by:

1. axiom schemas of the form: [V :A],
2. for every connective 2 and every truth value vi an introduction rule 2:i,
3. for every quantifier Q and every truth value vi an introduction rule Q:i,
4. weakening rules for every place i:

Γ
Γ, [i:A]

w:i

5. contraction rules
Γ, [i:A,A]
Γ, [i:A]

c:i

6. exchange rules
Γ, [i:B,A],∆
Γ, [i:A,B],∆

x:i

7. cut rules for every two truth values vi 6= vj :

Γ, [i:A] ∆, [j:A]
Γ,∆

cut:ij

The rules (4)–(7) are called structural rules.
A sequent Γ is provable in a given sequent calculus, if there is an upward tree of sequents,

rooted in Γ , s.t. every topmost sequent is an axiom and every other sequent is obtained from
the ones standing immediately above it by an application of one of the rules.

T h e o r e m 3.1. (Soundness) If a sequent is provable in LM, then it is valid.
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P r o o f . By induction on the length of proofs: Axioms are obviously valid, since every formula
has to take some truth value. Introduction rules preserve validity by definition. The weakening
rules are obviously sound. The cut rules are sound, since no formula can take two different
truth values. 2

T h e o r e m 3.2. (Completeness) If a sequent is valid, then it is provable in LM without
cuts from atomic axioms.

P r o o f . We use the method of reduction trees, due to Schütte [23] (see also [26, Ch. 1, § 8]).
We show that every sequent S is either provable in the sequent calculus or has a counter-model.

Let E be an enumeration of all tuples of terms over L. Call a free variable available at stage k
iff it occurs in the tree constructed before stage k (if there is no such variable, pick any and
call it available), and new otherwise. Call a p-tuple t̄ of terms available for the reduction of F
at place i with eigenvariables a1, . . . , aq at stage k on a branch B iff

1. t̄ contains only variables which are available at stage k or are among a1, . . . , aq, and
either

2(a). t̄ has not been used for a reduction of F at place i on B in a stage before k, or
2(b). the instance of the premise lying on B of a reduction of F at place i in a stage before k

where t̄ has been used did not contain any term variables.

A reduction tree is a tree of sequents constructed from Γ in stages as follows:
Stage 0: Write Γ at the root of the tree.
Stage k: If the topmost sequent Γ ′ of a branch contains an atomic formula A s.t. A ∈⋂
j∈I Γ ′(j) then stop the reduction for this branch. Call a branch open if it does not have this

property.
Apply the following reduction steps for every formula F occurring at place i in the topmost

sequent Γ ′ of an open branch, which has neither already been reduced at place i on this branch
in this stage, nor is the result of a reduction at this stage:

1. F ≡ 2(A′1, . . . , A
′
n): Replace Γ ′ in the reduction tree by:

〈Γ ′,∆′
2:i(j)〉j∈I

Γ ′

where ∆′
2:i(j) is an instance of ∆2:i(j) in the rule 2:i introducing F as in Definition 3.3,

obtained by instantiating A1, . . . , An with A′1, . . . , A′n, respectively.
2. F ≡ (Qx)A′(x): Let α1, . . . , αp be all eigenvariables and τ1, . . . , τq be all term variables

in the premises of the rule schema Q:i. Replace Γ ′ in the reduction tree by:〈
Γ ′,∆′

Q:i(j)
〉

j∈I

Γ ′

where ∆′
Q:i(j) is an instance of ∆Q:i(j) in Q:i introducing F as in Definition 3.4, obtained

by instantiating A with A′, the eigenvariables α1, . . . , αp with the first p-tuple a1, . . . ,
ap of new free variables in the enumeration E, and the term variables τ1, . . . , τq with
the first available q-tuple t1, . . . , tq of terms in E containing variables which are either
available or among a1, . . . , ap, Observe that F ∈ Γ ′(i) and thus F occurs in all upper
sequents.

Now let TS be the reduction tree constructed in this manner. If TS is finite, then every
topmost sequent contains an atomic formula that occurs at each place in that sequent. A
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cut-free proof of Γ from axioms containing these formulas is easily constructed by inserting
weakenings and exchanges.

If TS is infinite it has an infinite branch B by König’s Lemma. For every atomic formula
P (t1, . . . , tn) in B, there is an 1 ≤ l ≤ m s.t. P (t1, . . . , tn) never occurs at place l in any sequents
in this branch. We construct an interpretation I as follows: the domain is the set of terms,
ΦI(t) = t (t a term) and ΦI

(
P (t1, . . . , tn)

)
= vl, where vl is the truth value corresponding to

the place l.
If F is a formula occurring in B, and F occurs at place i anywhere in B, then valI(F ) 6= vi.

This is easily seen by induction on the structure of F : In particular, no formula in Γ evaluates
to the truth value corresponding to the position at which it stands. Hence I does not satisfy
Γ . 2

We obtain as a consequence of the reduction tree construction the following

P r o p o s i t i o n 3.1. Let F be any formula. The sequent [V :F ] is cut-free provable from
atomic axioms.

4 Elimination of Cuts

The completeness theorem above shows that for every valid sequent there is a cut-free proof of
that sequent. When analyzing given arbitrary proofs—as in our application in Section 6—one
would like to have a method of stepwise transformation to a cut-free proof. This corresponds
to extracting algorithmic content from proofs.

The proof of the cut-elimination theorem for the family LM of many-valued sequent calculi
is analogous to the proof of the classical case given in [11]. It proceeds by moving the cuts in
a given proof upwards and by reducing cuts to cuts on formulas of smaller complexity. The
most important prerequisite for the proof is therefore the possibility to transform a cut on a
composite formula to a derivation using only cuts acting on subformulas of the original cut-
formula. In this section, we give a cut-elimination procedure modulo such a notion of reduction
of cuts in the form of a parametric operator. In Section 5 we will show how to obtain such an
operator.

Like in [11], we replace the cut rule by the obviously equivalent mix rule:

Π Λ

Πi\A, Λj\A mix:ij(A)

where A occurs in Π(i) and Λ(j), and Πi\A (Λj\A) is obtained from Π (Λ) by deleting every
occurrence of A in Π(i) (Λ(j)). Call the calculus obtained from LM by replacing the cut rule
with the mix rule LM′.

D e f i n i t i o n 4.1. The degree of a mix:ij(A) is the depth of the mix formula A. The degree
of an LM′-proof P having only one mix:ij(A) as its last inference, denoted d(P ), is the degree
of that mix.

We call a thread (cf. [26, p. 14]) in P containing the left (right) upper sequent of the mix
a left (right) thread. The rank of a left (right) thread is the number of consecutive sequents
counting upwards from the left (right) upper sequent of the mix which contain the mix formula
at place i (j). The left (right) rank of P , denoted rl(P ) (rr(P )) is the maximum of the ranks
of its left (right) threads. The rank of P , denoted r(P ), is the sum of its left and right rank:
r(P ) = rl(P ) + rr(P ).

D e f i n i t i o n 4.2. An LM′-proof P is called regular, if every eigenvariable in P is the eigen-
variable of only one quantifier introduction and occurs only in the subproof ending in that
introduction.
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In particular it cannot be the case in a regular proof that a free variable occurs as an
eigenvariable in one inference and in a term which is replaced by a bound variable in another
inference. It is easy to see that any proof can be transformed into a regular proof by renaming
some eigenvariables.

The crucial part of the cut-elimination theorem is the reduction of mixes. From a proof ending
in one mix we pass to a proof containing several mixes acting on formulas of lower complexity.
The important step is when the principal formula of the mix is introduced immediately above
the mix. To deal with this case, we introduce the notion of mix reduction function Red below.
Using this function we obtain from the premises of the introduction rules immediately preceding
the mix a deduction of the conclusion of the mix from these premises, but using only cuts on
the formulas occurring in the premises, thus lowering the degree. By applying Red to a mix
we mean the modification of the proof by replacing the two introductions and the mix by this
deduction.

D e f i n i t i o n 4.3. Let A be a formula with outermost logical symbol f , let f :i and f :j be
the introduction rules for f at places i and j, and let Π,∆f :i(k) (k ∈ Ii) and Λ, ∆f :j(l) (l ∈ Ij)
be the premises of instances of f : i and f : j introducing A at places i and j, respectively. If f
is a quantifier, then f : i and f : j have eigenvariables a1, . . . , ap and eliminate (i.e., replace by
the bound variable) terms t1, . . . , tq. Then Red(A; f : i; f : j) = R is an LM′ derivation with
the following properties:

1. The end sequent of R is the empty sequent,
2. Every topmost sequent of R is obtained from ∆f :i(s) or ∆f :j(r) by replacing some (in-

cluding none) eigenvariables among a1, . . . , ap by terms among t1, . . . , tq,
3. R contains only mixes of degree < d(P ).

The function Red is called a mix reduction function.

R e m a r k 4.1. Note that Red eliminates only the outermost logical symbol of A, i.e., by
applying Red once the degree of a mix is reduced by exactly one. It is also possible to work
with a function Red which decreases the degree by more than one. When considering directly
dependent rules, i.e., rules which can be replaced by a number of primitive rules, it is then
evident how such an extension can be used to obtain cut-elimination procedures for the resulting
calculi. It only requires some inspection of the proofs ending in the two introduction rules f : i
and f : j and some manipulation to modify this extension so that mixes of degree d can be
reduced in one step to mixes of degree < d− 1. This will be evident in the next section where
we show how to obtain such a function Red.

D e f i n i t i o n 4.4. Let R be an LM′-derivation with end-sequent Γ and let Π be a sequent.
Then we denote by Π,R the derivation obtained from R by adding Π to the left of every sequent
in R, and by appending exchanges and contractions as necessary so that the end-sequent of
Π,R is Γ .

We are now ready to state and prove the Hauptsatz for LM:

T h e o r e m 4.1. Cuts can be eliminated in LM-proofs.

For the reader not steeped in proof theory this statement seems curious. It seems that we
have accomplished this result already (by the completeness theorem 3.2). A clarification is in
order here: The phrase “cuts can be eliminated” has the status of a terminus technicus, and
means much more than that for every proof there is one not using the cut rule. Roughly, it
means that there is a primitive recursive procedure that transforms a given proof into a cut-free
one, and moreover, this procedure is “local” in the sense that it eliminates one cut at a time
(or in some variants a whole cluster of cuts).



343

L e m m a 4.1. Assume that from any proof P ′ which contains only one mix of degree < d that
mix can be eliminated. Then all mixes can be eliminated from any LM′-proof P containing n
mixes of degrees < d.

P r o o f . By induction on the number n of mixes in P : For n = 1 this is the assumption. If
n > 1, then let P ′ be some subproof of P which ends in a mix and contains only that mix. By
assumption, the mix can be eliminated from P ′, yielding a proof P ′′ of the same end-sequent
as P ′. By replacing P ′ in P by P ′′ we obtain a proof with n− 1 mixes, all of degree < d, and
the induction hypothesis applies. 2

L e m m a 4.2. Let P be an LM′-proof containing only one mix:ij(A) as its last inference.
Then P can be transformed to a mix-free LM′-proof P of the same end-sequent.

P r o o f . Let P be an LM′-proof containing only one mix:ij(A) which occurs as the last
inference in P . W.l.o.g. we assume that P is regular. P is of the form:

.... P1

Π

.... P2

Λ

Πi\A, Λj\A mix:ij(A)

The proof is by double induction on the rank and degree of P :

1. r(P ) = 2, i.e., left and right rank of P equal 1. We distinguish cases according to the
type of the inferences immediately above the mix:

(a) Π is an axiom [V :A]. P is of the form

[V :A]

.... P2

Λ

[V \ vi:A], Λj\A mix:ij(A)

We can derive Πi\A, ΛjA without a mix as follows:
.... P2

Λ

[j:A, . . . , A], Λj\A
x

[j:A], Λj\A
c

[V \ vi:A], Λj\A
w

(b) Λ is an axiom. Similarly.
(c) Π is the conclusion of a structural inference. Since the left rank is 1, this inference

must be a weakening introducing A at place i:
.... P1

Πi\A

Πi\A, [i:A]
w: i

.... P2

Λ

Πi\A, Λj\A mix:ij(A)

where Π is Πi\A, [i:A]. We obtain Πi\A, Λj\A without a mix as follows:
.... P1

Πi\A

Πi\A, Λj\A
w
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(d) Λ is the conclusion of a structural inference. Similarly.
(e) Both Π and Λ are conclusions of introduction rules 2:i and 2:j for the connective 2:〈 .... Pir

Π,∆2:i(r)

〉
r

Π, [i:2(· · ·)]

〈 .... Pjs

Λ, ∆2:j(s)

〉
s

Λ, [j:2(· · ·)]
Π,Λ

mix:ij(2(· · ·))

R = Red(A;2: i;2: j) is a derivation of the empty sequent with initial sequents among
∆2:i(r) and ∆2:j(s). Let P ′ir (P ′js) be Pir (Pjs) with weakenings and exchanges
appended so that the end sequent equals Π,Λ,∆2:i(r) (Π,Λ,∆2:j(s)). Let P ′ be the
proof obtained from Π,Λ,R by writing P ′ir (P ′js) above any topmost sequent of the
form Π,Λ,∆2:i(r) (Π,Λ,∆2:j(s)). By the induction hypothesis and Lemma 4.1 the
mixes can be eliminated from P ′.

(f) Both Π and Λ are conclusions of introduction rules Q:i and Q:j for the quantifier Q:〈 .... Pir

Π,∆Q:i(r)

〉
r

Π, [i: (Qx)A(x)]

〈 .... Pjs

Λ, ∆Q:j(s)

〉
s

Λ, [j: (Qx)A(x)]
Π,Λ

mix:ij(Qx)A(x))

R = Red(A;Q: i;Q: j) is a derivation of the empty sequent. An initial sequent in
R is of the form ∆Q:i(r)σ or ∆Q:j(s)σ, where σ is a substitution mapping some
eigenvariables to terms. Let P ′ir (P ′js) be Pir (Pjs) with weakenings and exchanges
appended so that the end sequent equals Π,Λ,∆Q:i(r) (Π,Λ,∆Q:j(s)). Let P ′ be the
proof obtained from Π,Λ,R by writing P ′irσ (P ′jsσ) above any topmost sequent of the
form Π,Λ,∆Q:i(r)σ (Π,Λ,∆Q:j(s)σ). P ′ is indeed a proof since (a) Π and Λ cannot
contain any eigenvariables and (b) the terms in ranσ do not contain eigenvariables
of any quantifier introductions in the Pir or Pjs. By the induction hypothesis and
Lemma 4.1 the mixes can be eliminated from P ′.

2. rr(P ) > 1: Again, we distinguish cases:

(a) Λ(i) contains A. We obtain the following mix-free proof:
.... P1

Π

Πi\A, [i:A, . . . , A]
e

Πi\A, [i:A]
c

Πi\A, Λj\A
w

(b) Π(j) contains A. Similarly.
(c) Λ is the consequence of an inference J2, which is either structural (but not a mix), or

a logical inference (not introducing A at place j). P is of the form

.... P̂

Π

.... P1

Ψ1 . . .

.... Pp

Ψp

Λ
J2

Πi\A, Λj\A mix:ij(A)
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Let j1, . . . , js, 1 ≤ jk ≤ p, be all indices s.t. Ψjk
contains A. (There is at least one

such jk, otherwise the right rank of P would equal 1). Consider the proofs P ′jk
:

....
Π

....
Ψjk

Πi\A, Ψjk

j\A mix:ij(A)

In P ′jk
, rl(P ′jk

) = rl(P ) and rr(P ′jk
) ≤ rr(P )−1, and in sum r(P ′jk

) ≤ r(P )−1. Hence
the induction hypothesis applies and we have mix-free proofs P ′′jk

of Πi\A, Ψjk

j\A. For
indices l not occurring in the above list, we have that Ψl equals Ψl

j\A, and we define
P ′′l as

.... Pl

Ψl

Πi\A, Ψl

w

If J2 is a weakening at place j (and consequently, p = 1 and Ψ1
j\A = Λj\A), then P ′′1

serves as our transformed proof. Otherwise, construct a proof as follows:
.... P ′′1

Πi\A, Ψ1
j\A . . .

.... P ′′p

Πi\A, Ψp
j\A

Πi\A, Λj\A J2

Πi\A, Λj\A
x

(d) Λ is the consequence of a logical inference J2 introducing A at place j. P is of the
form

.... P̂

Π

.... P1

Λ, ∆1 . . .

.... Pp

Λ, ∆p

Λ, [j:A]
J2

Πi\A, Λj\A mix:ij(A)

Consider the proofs P ′k, 1 ≤ k ≤ p (Note that ∆k does not contain A—only proper
subformulas of A—and hence ∆k

j\A equals ∆k):

.... P ′

Π

.... Pk

Λ, ∆k

Πi\A, Λj\A,∆k

(A, i, j)

In Pk, rl(P ′k) = rl(P ), rr(P ′k) ≤ rr(P )− 1 and in sum r(P ′k) ≤ r(P )− 1. Hence, the
induction hypothesis applies and we obtain mix-free proofs P (k)′′ of Πi\A, Λj\A,∆k.
Construct a proof P ′ as follows:

.... P̂

Π

.... P ′′1
Πi\A, Λj\A,∆1 . . .

.... P ′′p
Πi\A, Λj\A,∆p

Πi\A, Λj\A, [j:A]
J2

Πi\A,Πi\A, Λj\A mix:ij(A)

Note that A does not occur at place j in Πi\A, since otherwise case 2.b would have
applied, hence rr(P ′) = 1. With rl(P ′) = rl(P ) we have that r(P ′) < r(P ) and the
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induction hypothesis yields a mix-free proof P ′′ of Πi\A,Πi\A, Λj\A. We obtain a
mix-free proof: .... P ′

Πi\A,Πi\A, Λj\A

Πi\A, Λj\A
xc

3. rr(P ) = 1 and rl(P ) > 1: This case is dealt with in the same way as 2. above, mutatis
mutandis.

This completes the proof of the lemma (and the cut-elimination theorem). 2

5 Resolution-based Cut Reduction Operators

In this section we give a definition of one of many possible cut reduction functions Red for the
Hauptsatz. Our approach uses many-valued resolution. It is based on the observation that the
soundness of the cut rule consists in the fact that a formula A cannot take two different truth
values at the same time. Clauses are a convenient metalogical notation for expressing such
negative statements, while sequents are not. There are, however, close relationships between
clause and sequent calculi and in particular the resolution rule and the cut rule. It is not
surprising, then, that resolution deductions can be translated to sequent calculus derivation
using only cuts (or, as in our case, mixes).

Many-valued resolution [1] is a straightforward extension of resolution for classical first-order
logic. It is based on clause syntax: A clause is a set of literals, a literal is an atomic formula
together with a truth value index. In usual resolution, the negation sign plays the rôle of the
truth value index: ¬A means “A is false”, A without negation sign means “A is true”. In the
many-valued case we have literals of the form Aw with the interpretation “A takes the value
w.”

The free variables in a clause C are understood to be “universally quantified”. More pre-
cisely, a structure M universally satisfies a clause C iff for all assignments s the interpretation
〈M, s〉 satisfies C (in the sense of Definition 3.2). M universally satisfies a set of clauses C
iff M universally satisfies each clause C ∈ C. If no M universally satisfies C, then C is called
universally unsatisfiable. The empty clause ∅ is, of course, universally unsatisfiable.

In the following, we assume familiarity with basic resolution terminology.

D e f i n i t i o n 5.1. Let C1 and C2 be variable disjoint clauses and let D1 = {Av
1, . . . , A

v
p} ⊆

C1 and D2 = {Bw
1 , . . . , Bw

q } ⊆ C2 be subsets of C1 and C2 where v 6= w. If
{A1, . . . , Ap, B1, . . . , Bq} is unifiable with most general unifier (mgu) σ, then R = (C1 \D1)σ∪
(C2 \D2)σ is called a resolvent of C1 and C2.

A (tree-like) resolution deduction from a set of clauses C is an upward tree of clauses, where
every clause either results from a clause in C by renaming of variables iff it is a topmost clause,
or otherwise is a resolvent of the two clauses immediately above it. We write C ` D if there is
a resolution deduction from C whose bottom clause is D.

T h e o r e m 5.1. ([1, 27]) C ` ∅ iff C is universally unsatisfiable.

D e f i n i t i o n 5.2. Let Γ be a sequent consisting of atomic formulas only. Then cl(Γ ) is
defined as the clause

cl(Γ ) = {Avi | A occurs in Γ(i)}
Conversely, if C is a clause then the sequent seq(C) is defined by

seq(C)(i) = A1, . . . , Ap
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if Avi
1 , . . . , Avi

p are all literals with index vi in C. (We assume some arbitrary but fixed ordering
of atoms.)

Clearly, seq(cl(Γ )) is Γ up to exchanges and contractions.
The mix reduction function Red takes as arguments a formula A with outermost symbol f

and two rules f : i and f : j introducing f at places i and j. We shall now define one possible
reduction function by showing how, for any two introduction rules, a schematic derivation of
the empty sequent from the premises of the rules can be obtained. For any particular formula
and rule applications the corresponding instance of the derivation is immediately obtained by
matching formulas to schematic letters, terms to metavariables for terms, and variables to
metavariables for eigenvariables.

Consider the rule schemata

〈∆2:i(r)〉r∈Ii

[i:2(A1, . . . , An)]

〈∆2:j(s)〉s∈Ij

[j:2(A1, . . . , An)]

Let ∆′
2:i(r) (∆′

2:j(s)) be obtained from ∆2:i(r) (∆2:j(s)) by replacing the schematic formula
Ai by an atomic formula PAi . Let C be the set of clauses

C =
⋃

r∈Ii

{cl(∆′
2:i(r)} ∪

⋃
s∈Ij

{cl(∆′
2:j(r)}

C is clearly universally unsatisfiable, since (the “conjunction” of) ∆′
2:i(r) is equivalent to 2(·)vi

and (the “conjunction” of) ∆′
2:j(s) is equivalent to 2(·)vj , where i 6= j.

By the completeness of many-valued resolution there is a resolution deduction R of ∅ from C.
Note that the literals in C are all variable-free, and hence, in every resolution step, there is
only one literal that is resolved upon. R can be translated to an LM′ deduction seq(R) of the
empty sequent. We argue by induction:

If R consists only of an initial clause cl(∆′), then seq(R) is the sequent seq(cl(∆′)).
Otherwise, let .... R1

C1 ∪ {P vk

Ai
}

.... R2

C2 ∪ {P vl

Ai
}

C1 ∪ C2

be the last resolution step in R. We obtain seq(R) as follows:
.... seq(R1)

seq(C1 ∪ {P vk

Ai
})

.... seq(R2)
seq(C2 ∪ {P vl

Ai
})

seq(C1), seq(C2)
mix:ij(PAi)

We can now take as Red(A;2: i;2: j) the derivation P where P is obtained from seq(R) by
(a) replacing PAi by Ai and (b) adding (if necessary) derivations of seq(cl(∆)) from ∆ above
the initial sequents (these require only exchanges).

Example 5.1. Consider the case of a mix on two formulas with outermost logical symbol ∨
at places f and ⊥. The clause translation of the premises is

C = {{P f
A}, {P

f
B}, {P

f
A, P⊥A }, {P

f
B , P⊥B }, {P⊥A , P⊥B }}

A possible resolution refutation is

{P f
B}

{P f
A} {P⊥A , P⊥B }

{P⊥B }
∅
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From this we obtain the following deduction schema:

[f :B]
[f :A] [⊥:A,B]

[⊥:B]
mix:f⊥(A)

∅
mix:f⊥(B)

For the quantifiers, consider the rule schemata

〈∆Q:i(r)〉r∈Ii

[i: (Qx)A(x)]

〈∆Q:j(s)〉s∈Ij

[j: (Qx)A(x)]

Let ∆′
Q:i(r) (∆′

Q:j(s)) be obtained from ∆Q:i(r) (∆Q:j(s)) by replacing the schematic formula
A(α) by an atomic formula P (xα), and every formula A(τ) by P (cτ ). Let C be the set of clauses

C =
⋃

r∈Ii

{cl(∆′
Q:i(r)} ∪

⋃
s∈Ij

{cl(∆′
Q:j(r)}

Again, C is universally unsatisfiable. Let R be a resolution deduction of ∅ from C. Since R is in
tree form, the cumulative substitution ρ of R can be defined as usual. The initial clauses of R
may be renamings of clauses in C. We choose these renamings so that a variable xα is renamed
as xh

α. We recursively translate Rρ into an LM′-derivation as follows:
If Rρ only consists of an initial clause cl(∆′), then seq(Rρ) is the sequent seq(cl(∆′λρ)) (λ

is some renaming substitution).
Otherwise, let .... R1

C1 ∪ {Lvl}

.... R2

C2 ∪ {Lvk}
C1 ∪ C2

be the last resolution step in Rρ, where L is an atom of the form P (x) or P (c) (x is a variable
and c a constant symbol). Recall that the cumulative substitution has been applied to R, so
resolution steps actually do take this special form with only one literal resolved upon. We
obtain seq(Rρ) as follows:

.... seq(R1)
seq(C1 ∪ {Lvk})

.... seq(R2)
seq(C2 ∪ {Lvl})

seq(C1), seq(C2)
mix:ij(L)

The substitution ρ replaces variables of the form xh
α by constants cτ . take as Red(A;Q: i;Q: j)

the derivation P where P is obtained from seq(Rρ) by (a) replacing P (xh
α) resp. P (cτ ) by A(α)

resp. A(τ) and (b) adding (if necessary) derivations of seq(cl(∆))λπ from ∆λπ above the initial
sequents (these require only exchanges and contractions).

Example 5.2. Consider the case of a mix on two formulas with outermost logical symbol U
at places u and ⊥. The clause translation of the premises is

C =
{
{P (xα)u}, {P (cτ )f , P (cτ )⊥}, {P (cτ ′)t, P (cτ ′)⊥}

}
One of the possible resolution refutations is

{P (x′α)u}
{P (xα)u} {P (cτ )f , P (cτ )⊥}

{P (cτ )⊥}
cτ/xα

∅
cτ/x′α
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Note that two copies of the clause {P (xα)u} have been used. From this we obtain the following
deduction schema:

[u:A(τ/α)]
[u:A(τ/α)] [f,⊥:A(τ)]

[⊥:A(τ)]
mix:uf(A(τ))

∅
mix:u⊥(A(τ))

Similar considerations could also be used to obtain “macro-reductions” of composite formulas
of depth > 1 in one step. This may lead to an algorithmic simplification of cut-elimination if
the structure of the cut formula is of a specific type, e.g., monadic.

6 Reasoning about Knowledge in Belnap’s Logic

A consequence of the cut-elimination theorem is Gentzen’s “Verschärfter Hauptsatz”, also
known as

T h e o r e m 6.1. (Midsequent Theorem) Let Π be a sequent consisting only of prenex for-
mulas. Any proof of Π can be effectively transformed to a cut-free proof of Π containing sequents
Σ1, . . . , Σp, s.t., for all 1 ≤ j ≤ p,

1. Σj is quantifier-free,
2. every inference above Σj is either structural or propositional, and
3. every inference below Σj is either structural or a quantifier inference.

P r o o f . By the cut-elimination theorem and Proposition 3.1, the given proof can be trans-
formed to a cut-free proof P of Π from atomic axiom sequents. The order of a quantifier
introduction (Q:i) in P is defined as the number of propositional inferences below (Q:i). The
order o(P ) of P is the sum of the orders of all quantifier inferences occurring in P .

We prove the theorem by induction on the order of P :

1. o(P ) = 0: There is no propositional inference occurring below any quantifier inferences.
Let B be a branch in P . Let ΣB be the conclusion of the lowermost propositional infer-
ence on B, or the (atomic) axiom sequent on B if B does not contain any propositional
inferences. If ΣB contains a quantified formula F , then F is introduced by weakenings.
To see this, recall that Π contains only prenex formulas: By the subformula property, F
is a subformula of a formula in Π, hence no propositional inferences apply to it. Eliminate
F and all inferences applying to it from the part of B above ΣB , and add appropriate
weakenings and exchanges directly below ΣB . After the above procedure has been applied
to all branches B in P , the (finite) set of all ΣB serves as the set of Σj in the statement
of the theorem.

2. o(P ) > 0: Then there is a quantifier inference (Q:i) with the following property: The
topmost logical inference below (Q:i) is a propositional inference, say (2:j). The part
of P between (Q:i) and (2:j) takes the following form:

....
Γ1 . . .

〈 ....
Γ ′,∆Q:i(k)

〉
k

Γ ′, [i: (Qx)A(x)]
Q:i

.... ∗
Γ ′′ . . .

....
Γn

Γ
2:j
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where the part denoted by ∗ contains only structural inferences, and Γ and Γ ′′ contain
(Qx)A(x) as a sequent-formula. We can now lower the order by exchanging the positions
of (Q:i) and (2:j):

/
∖

....
Γ1

∆Q:i(k), Γ1 . . .

....
Γ ′,∆Q:i(k)

Γ ′,∆Q:i(k), [i: (Qx)A(x)]
w

∆Q:i(k), Γ ′, [i: (Qx)A(x)]
e

.... ∗
∆Q:i(k), Γ ′′ . . .

....
Γn

∆Q:i(k), Γn

∆, Γ
2:j

Γ,∆Q:i(k)
e

∖
/

k

Γ, [i: (Qx)A(x)]
Q:i

Γ
e, c

2

Similar considerations can also be used for analyzing natural deduction proofs in many-valued
logic as introduced in [5].

In the following example, we consider a representation of knowledge about (possibly incon-
sistent and incomplete) sets E of facts, using Belnap’s logic enriched by the quantifiers ∀ and
U. The facts are simply Boolean ground literals. These facts may be contradictory in the sense
that both P and ¬P are present. Furthermore, it may be the case that for some ground atom A
of the language, neither A nor ¬A is contained in the facts base. The facts may be thought of
as evidences for certain state of affairs. They might, e.g., be protocols of certain experiments.

The epistemic state s of a set of facts is the four-valued interpretation of all ground atoms
induced by the facts base E: if both A and ¬A are facts, then s(A) = ⊥, if neither A nor ¬A
is a fact then s(A) = u, if only A (¬A) is a fact then s(A) = t (f).

The meta-knowledge is a set K of universal true sentences (∀x̄)B1(x̄), . . . , (∀x̄)Bq(x̄) of
Belnap’s logic. The meta-knowledge is assumed to be consistent with all possible epistemic
states. In cases where the facts base is too large or unwieldy to work with, one might use
instead the meta-knowledge to reason about the facts. For instance, we might deduce from K
that the sentence (Ux)A(x) takes the truth value ⊥, expressing that the instances of A(x) are
neither uniformly true nor uniformly false. This can be formalized in the sequent calculus by
proving the sequent [f : (∀x̄)B1(x̄), . . . , (∀x̄)Bq(x̄)], [⊥: (Ux)A(x)]. A proof of this sequent can,
by virtue of an analog of Herbrand’s theorem, be analyzed to yield a finite sequence of critical
pairs 〈A(t1), A(t′1)〉, . . . , 〈A(tp), A(t′p)〉 s.t. for every epistemic state under consideration, A(ti)
and A(t′i) will take different truth values for some 1 ≤ i ≤ p.

T h e o r e m 6.2. Let P be a proof of

[f : (∀x)B1(x), . . . , (∀x)Bq(x)], [⊥: (Ux)A(x)]

Then P can be transformed to proofs of

[f : (∀x)B1(x), . . . , (∀x)Bq(x)], [w1:A(tw1
1 )], [⊥:A(tw1

1 )], . . . , [wr:A(twr
r )], [⊥:A(twr

r )]

for 〈w1, . . . , wr〉 ∈ {t, f}r. (The critical pairs then are 〈A(tt1), A(tf1 )〉, . . . , 〈A(ttr), A(tfr )〉.)
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P r o o f . Apply the midsequent theorem to P . None of the quantifier inferences in the proof
have eigenvariable conditions (cf. Example 3.2). Let Σ1, . . . , Σp be the midsequents of this
transformed proof. From each of these midsequents a sequent of the above form can be derived,
possibly using weakenings. Observe that (∀:f) takes only one premise, hence one midsequent
is sufficient in each case. 2

7 Conclusion

We have introduced a general approach to obtaining sequent calculi for finite-valued first-
order logics. These sequent calculi enjoy cut-elimination and midsequent theorems. In special
cases, the proof-theoretic properties can be exploited to obtain more specific results about the
particular logics at hand. We illustrated this by exhibiting a version of Herbrand’s theorem
for a first-order extension of Belnap’s four-valued logic suitable for reasoning about possibly
inconsistent and incomplete knowledge bases. Similar results by proof-theoretic analysis such
as interpolants constructed in Maehara’s lemma (see [26, Ch. 1]) may be used for further
classification of inconsistencies.
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[16] R. Hähnle and W. Kernig. Verification of switch level designs with many-valued logic. In
A. Voronkov, editor, Logic Programming and Automated Reasoning. Proceedings LPAR’93,
LNAI 698, pp. 158–169, Berlin, 1993. Springer.

[17] Y. Kaluzhny and A. Y. Muravitsky. A knowledge representation based on the Belnap’s
four-valued logic. J. Applied Non-Classical Logics, 1993. to appear.

[18] A. Mostowski. The Hilbert epsilon function in many-valued logics. Acta Philos. Fenn.,
16:169–188, 1963.

[19] P. O’Hearn and Z. Stachniak. A resolution framework for finitely-valued first-order logics.
J. Symbolic Computation, 13:235–254, 1992.

[20] J. B. Rosser and A. R. Turquette. Many-Valued Logics. Studies in Logic. North-Holland,
Amsterdam, 1952.

[21] G. Rousseau. Sequents in many valued logic I. Fund. Math., 60:23–33, 1967.
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Zusammenfassung: Es wird eine uniforme Konstruktion von Sequentialkalkülen für endlichw-
ertige Logiken erster Stufe mit sog. Distributionsquantoren vorgestellt. Für diese Kalküle wer-
den Vollständigkeit, Schnittelimination und Mittelsequenzsätze gezeigt. Als eine Anwendung
wird ein Analogon zum Herbrand’schen Satz für die vierwertige Wissensrepräsentationslogik
von Belnap und Ginsberg abgeleitet. Dieser Satz kann zum Schließen mit unvollständigen und
inkonsistenten Daten verwendet werden.
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Erratum

The introduction rules for ∧:f and ∨:t given in Example 3.1 on page 338 are erroneous. The
correct partial normal form for ∨ is:

(A ∨B)t iff (At or Au or A⊥ or Bt) and (At or Au or Bt or Bu) and (At or A⊥ or Bt or B⊥)
and (At or Bt or Bu or B⊥)

The correct rules are:

Γ, [u,⊥, t:A], [t:B] Γ, [⊥, t:A,B] Γ, [u, t:A,B] Γ, [u,⊥, t:B], [t:A]
Γ, [t:A ∨B]

∨:t

Γ, [u,⊥, f :A], [f :B] Γ, [⊥, f :A,B] Γ, [u, f :A,B] Γ, [u,⊥, f :B], [f :A]
Γ, [f :A ∨B]

∧:f

We are indebted to E. Reznik and M. Ultlog for drawing our attention to this mistake.


