11,163 research outputs found

    NumGfun: a Package for Numerical and Analytic Computation with D-finite Functions

    Get PDF
    This article describes the implementation in the software package NumGfun of classical algorithms that operate on solutions of linear differential equations or recurrence relations with polynomial coefficients, including what seems to be the first general implementation of the fast high-precision numerical evaluation algorithms of Chudnovsky & Chudnovsky. In some cases, our descriptions contain improvements over existing algorithms. We also provide references to relevant ideas not currently used in NumGfun

    Rational series and asymptotic expansion for linear homogeneous divide-and-conquer recurrences

    Full text link
    Among all sequences that satisfy a divide-and-conquer recurrence, the sequences that are rational with respect to a numeration system are certainly the most immediate and most essential. Nevertheless, until recently they have not been studied from the asymptotic standpoint. We show how a mechanical process permits to compute their asymptotic expansion. It is based on linear algebra, with Jordan normal form, joint spectral radius, and dilation equations. The method is compared with the analytic number theory approach, based on Dirichlet series and residues, and new ways to compute the Fourier series of the periodic functions involved in the expansion are developed. The article comes with an extended bibliography

    Comparison of five methods of computing the Dirichlet-Neumann operator for the water wave problem

    Full text link
    We compare the effectiveness of solving Dirichlet-Neumann problems via the Craig-Sulem (CS) expansion, the Ablowitz-Fokas-Musslimani (AFM) implicit formulation, the dual AFM formulation (AFM*), a boundary integral collocation method (BIM), and the transformed field expansion (TFE) method. The first three methods involve highly ill-conditioned intermediate calculations that we show can be overcome using multiple-precision arithmetic. The latter two methods avoid catastrophic cancellation of digits in intermediate results, and are much better suited to numerical computation. For the Craig-Sulem expansion, we explore the cancellation of terms at each order (up to 150th) for three types of wave profiles, namely band-limited, real-analytic, or smooth. For the AFM and AFM* methods, we present an example in which representing the Dirichlet or Neumann data as a series using the AFM basis functions is impossible, causing the methods to fail. The example involves band-limited wave profiles of arbitrarily small amplitude, with analytic Dirichlet data. We then show how to regularize the AFM and AFM* methods by over-sampling the basis functions and using the singular value decomposition or QR-factorization to orthogonalize them. Two additional examples are used to compare all five methods in the context of water waves, namely a large-amplitude standing wave in deep water, and a pair of interacting traveling waves in finite depth.Comment: 31 pages, 18 figures. (change from version 1: corrected error in table on page 12
    • …
    corecore