14 research outputs found

    Neural Networks for Information Retrieval

    Get PDF
    Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many different approaches for many different IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. Additionally, it is interesting to see what key insights into IR problems the new technologies are able to give us. The aim of this full-day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR research. It covers key architectures, as well as the most promising future directions.Comment: Overview of full-day tutorial at SIGIR 201

    Relevance-based Word Embedding

    Full text link
    Learning a high-dimensional dense representation for vocabulary terms, also known as a word embedding, has recently attracted much attention in natural language processing and information retrieval tasks. The embedding vectors are typically learned based on term proximity in a large corpus. This means that the objective in well-known word embedding algorithms, e.g., word2vec, is to accurately predict adjacent word(s) for a given word or context. However, this objective is not necessarily equivalent to the goal of many information retrieval (IR) tasks. The primary objective in various IR tasks is to capture relevance instead of term proximity, syntactic, or even semantic similarity. This is the motivation for developing unsupervised relevance-based word embedding models that learn word representations based on query-document relevance information. In this paper, we propose two learning models with different objective functions; one learns a relevance distribution over the vocabulary set for each query, and the other classifies each term as belonging to the relevant or non-relevant class for each query. To train our models, we used over six million unique queries and the top ranked documents retrieved in response to each query, which are assumed to be relevant to the query. We extrinsically evaluate our learned word representation models using two IR tasks: query expansion and query classification. Both query expansion experiments on four TREC collections and query classification experiments on the KDD Cup 2005 dataset suggest that the relevance-based word embedding models significantly outperform state-of-the-art proximity-based embedding models, such as word2vec and GloVe.Comment: to appear in the proceedings of The 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '17

    Unbiased Learning to Rank with Unbiased Propensity Estimation

    Full text link
    Learning to rank with biased click data is a well-known challenge. A variety of methods has been explored to debias click data for learning to rank such as click models, result interleaving and, more recently, the unbiased learning-to-rank framework based on inverse propensity weighting. Despite their differences, most existing studies separate the estimation of click bias (namely the \textit{propensity model}) from the learning of ranking algorithms. To estimate click propensities, they either conduct online result randomization, which can negatively affect the user experience, or offline parameter estimation, which has special requirements for click data and is optimized for objectives (e.g. click likelihood) that are not directly related to the ranking performance of the system. In this work, we address those problems by unifying the learning of propensity models and ranking models. We find that the problem of estimating a propensity model from click data is a dual problem of unbiased learning to rank. Based on this observation, we propose a Dual Learning Algorithm (DLA) that jointly learns an unbiased ranker and an \textit{unbiased propensity model}. DLA is an automatic unbiased learning-to-rank framework as it directly learns unbiased ranking models from biased click data without any preprocessing. It can adapt to the change of bias distributions and is applicable to online learning. Our empirical experiments with synthetic and real-world data show that the models trained with DLA significantly outperformed the unbiased learning-to-rank algorithms based on result randomization and the models trained with relevance signals extracted by click models

    Neural Vector Spaces for Unsupervised Information Retrieval

    Get PDF
    We propose the Neural Vector Space Model (NVSM), a method that learns representations of documents in an unsupervised manner for news article retrieval. In the NVSM paradigm, we learn low-dimensional representations of words and documents from scratch using gradient descent and rank documents according to their similarity with query representations that are composed from word representations. We show that NVSM performs better at document ranking than existing latent semantic vector space methods. The addition of NVSM to a mixture of lexical language models and a state-of-the-art baseline vector space model yields a statistically significant increase in retrieval effectiveness. Consequently, NVSM adds a complementary relevance signal. Next to semantic matching, we find that NVSM performs well in cases where lexical matching is needed. NVSM learns a notion of term specificity directly from the document collection without feature engineering. We also show that NVSM learns regularities related to Luhn significance. Finally, we give advice on how to deploy NVSM in situations where model selection (e.g., cross-validation) is infeasible. We find that an unsupervised ensemble of multiple models trained with different hyperparameter values performs better than a single cross-validated model. Therefore, NVSM can safely be used for ranking documents without supervised relevance judgments.Comment: TOIS 201

    Towards an Integrative Approach for Automated Literature Reviews Using Machine Learning

    Get PDF
    Due to a huge amount of scientific publications which are mostly stored as unstructured data, complexity and workload of the fundamental process of literature reviews increase constantly. Based on previous literature, we develop an artifact that partially automates the literature review process from collecting articles up to their evaluation. This artifact uses a custom crawler, the word2vec algorithm, LDA topic modeling, rapid automatic keyword extraction, and agglomerative hierarchical clustering to enable the automatic acquisition, processing, and clustering of relevant literature and subsequent graphical presentation of the results using illustrations such as dendrograms. Moreover, the artifact provides information on which topics each cluster addresses and which keywords they contain. We evaluate our artifact based on an exemplary set of 308 publications. Our findings indicate that the developed artifact delivers better results than known previous approaches and can be a helpful tool to support researchers in conducting literature reviews

    A Zero Attention Model for Personalized Product Search

    Full text link
    Product search is one of the most popular methods for people to discover and purchase products on e-commerce websites. Because personal preferences often have an important influence on the purchase decision of each customer, it is intuitive that personalization should be beneficial for product search engines. While synthetic experiments from previous studies show that purchase histories are useful for identifying the individual intent of each product search session, the effect of personalization on product search in practice, however, remains mostly unknown. In this paper, we formulate the problem of personalized product search and conduct large-scale experiments with search logs sampled from a commercial e-commerce search engine. Results from our preliminary analysis show that the potential of personalization depends on query characteristics, interactions between queries, and user purchase histories. Based on these observations, we propose a Zero Attention Model for product search that automatically determines when and how to personalize a user-query pair via a novel attention mechanism. Empirical results on commercial product search logs show that the proposed model not only significantly outperforms state-of-the-art personalized product retrieval models, but also provides important information on the potential of personalization in each product search session
    corecore