10,576 research outputs found

    Adaptive driver modelling in ADAS to improve user acceptance: A study using naturalistic data

    Get PDF
    Accurate understanding of driver behaviour is crucial for future Advanced Driver Assistance Systems (ADAS) and autonomous driving. For user acceptance it is important that ADAS respect individual driving styles and adapt accordingly. Using data collected during a naturalistic driving study carried out at the University of Southampton, we assess existing models of driver acceleration and speed choice during car following and when cornering. We observe that existing models of driver behaviour that specify a preferred inter-vehicle spacing in car-following situations appear to be too prescriptive, with a wide range of acceptable spacings visible in the naturalistic data. Bounds on lateral acceleration during cornering from the literature are visible in the data, but appear to be influenced by the minimum cornering radii specified in design codes for UK roadway geometry. This analysis of existing driver models is used to suggest a small set of parameters that are sufficient to characterise driver behaviour in car-following and curve driving, which may be estimated in real-time by an ADAS to adapt to changing driver behaviour. Finally, we discuss applications to adaptive ADAS with the objectives of improving road safety and promoting eco-driving, and suggest directions for future researc

    Models and Performance of VANET based Emergency Braking

    Get PDF
    The network research community is working in the field of automotive to provide VANET based safety applications to reduce the number of accidents, deaths, injuries and loss of money. Several approaches are proposed and investigated in VANET literature, but in a completely network-oriented fashion. Most of them do not take into account application requirements and no one considers the dynamics of the vehicles. Moreover, message repropagation schemes are widely proposed without investigating their benefits and using very complicated approaches. This technical report, which is derived from the Master Thesis of Michele Segata, focuses on the Emergency Electronic Brake Lights (EEBL) safety application, meant to send warning messages in the case of an emergency brake, in particular performing a joint analysis of network requirements and provided application level benefits. The EEBL application is integrated within a Collaborative Adaptive Cruise Control (CACC) which uses network-provided information to automatically brake the car if the driver does not react to the warning. Moreover, an information aggregation scheme is proposed to analyze the benefits of repropagation together with the consequent increase of network load. This protocol is compared to a protocol without repropagation and to a rebroadcast protocol found in the literature (namely the weighted p-persistent rebroadcast). The scenario is a highway stretch in which a platoon of vehicles brake down to a complete stop. Simulations are performed using the NS_3 network simulation in which two mobility models have been embedded. The first one, which is called Intelligent Driver Model (IDM) emulates the behavior of a driver trying to reach a desired speed and braking when approaching vehicles in front. The second one (Minimizing Overall Braking Induced by Lane change (MOBIL)), instead, decides when a vehicle has to change lane in order to perform an overtake or optimize its path. The original simulator has been modified by - introducing real physical limits to naturally reproduce real crashes; - implementing a CACC; - implementing the driver reaction when a warning is received; - implementing different network protocols. The tests are performed in different situations, such as different number of lanes (one to five), different average speeds, different network protocols and different market penetration rates and they show that: - the adoption of this technology considerably decreases car accidents since the overall average maximum deceleration is reduced; - network load depends on application-level details, such as the implementation of the CACC; - VANET safety application can improve safety even with a partial market penetration rate; - message repropagation is important to reduce the risk of accidents when not all vehicles are equipped; - benefits are gained not only by equipped vehicles but also by unequipped ones

    Ecological IVIS design : using EID to develop a novel in-vehicle information system

    Get PDF
    New in-vehicle information systems (IVIS) are emerging which purport to encourage more environment friendly or ‘green’ driving. Meanwhile, wider concerns about road safety and in-car distractions remain. The ‘Foot-LITE’ project is an effort to balance these issues, aimed at achieving safer and greener driving through real-time driving information, presented via an in-vehicle interface which facilitates the desired behaviours while avoiding negative consequences. One way of achieving this is to use ecological interface design (EID) techniques. This article presents part of the formative human-centred design process for developing the in-car display through a series of rapid prototyping studies comparing EID against conventional interface design principles. We focus primarily on the visual display, although some development of an ecological auditory display is also presented. The results of feedback from potential users as well as subject matter experts are discussed with respect to implications for future interface design in this field

    Analysis of Driver Behavior Modeling in Connected Vehicle Safety Systems Through High Fidelity Simulation

    Get PDF
    A critical aspect of connected vehicle safety analysis is understanding the impact of human behavior on the overall performance of the safety system. Given the variation in human driving behavior and the expectancy for high levels of performance, it is crucial for these systems to be flexible to various driving characteristics. However, design, testing, and evaluation of these active safety systems remain a challenging task, exacerbated by the lack of behavioral data and practical test platforms. Additionally, the need for the operation of these systems in critical and dangerous situations makes the burden of their evaluation very costly and time-consuming. As an alternative option, researchers attempt to use simulation platforms to study and evaluate their algorithms. In this work, we introduce a high fidelity simulation platform, designed for a hybrid transportation system involving both human-driven and automated vehicles. We decompose the human driving task and offer a modular approach in simulating a large-scale traffic scenario, making it feasible for extensive studying of automated and active safety systems. Furthermore, we propose a human-interpretable driver model represented as a closed-loop feedback controller. For this model, we analyze a large driving dataset to extract expressive parameters that would best describe different driving characteristics. Finally, we recreate a similarly dense traffic scenario within our simulator and conduct a thorough analysis of different human-specific and system-specific factors and study their effect on the performance and safety of the traffic network

    Driving automation: Learning from aviation about design philosophies

    Get PDF
    Full vehicle automation is predicted to be on British roads by 2030 (Walker et al., 2001). However, experience in aviation gives us some cause for concern for the 'drive-by-wire' car (Stanton and Marsden, 1996). Two different philosophies have emerged in aviation for dealing with the human factor: hard vs. soft automation, depending on whether the computer or the pilot has ultimate authority (Hughes and Dornheim, 1995). This paper speculates whether hard or soft automation provides the best solution for road vehicles, and considers an alternative design philosophy in vehicles of the future based on coordination and cooperation

    Safety Evaluation Using Counterfactual Simulations: The use of computational driver behavior models in crash avoidance systems and virtual simulations with optimal subsampling

    Get PDF
    Traffic safety is a problem worldwide. In-vehicle conflict and crash avoidance systems have been under development and assessment for some time, as integral parts of Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (ADS). Among the methods used to assess conflict and crash avoidance systems developed by the automotive industry, virtual safety assessment methods have been shown to have great potential and efficiency. In fact, scenario generation-based virtual safety assessments play—and are likely to continue to play—a very important role in the assessments of vehicles of all levels of automation. The ultimate aim of this thesis is to improve the safety performance of conflict and crash avoidance systems. This aim is addressed through the use of computational driver models in two different ways. First, by using comfort-zone boundaries in system design, and second, by using a behavior-based crash-causation model together with a novel optimized scenario generation method for virtual safety assessment.The first objective of this thesis is to investigate how a driver model which includes road users’ comfortable behaviors in crash avoidance algorithms impacts the systems’ safety performance and the residual crash characteristics. Chinese car-to-two-wheeler crashes were targeted; Automated Emergency Braking (AEB) algorithms, which comprised the proposed crash avoidance systems, were compared to a traditional AEB algorithm. The proposed algorithms showed larger safety performance benefits. In addition, the similarities in residual crash characteristics regarding impact speed and location after different AEB implementations can potentially simplify the designs of in-crash protection system in future.The second objective is to develop and apply a method for efficient subsampling in crash-causation-model-based scenario generation for virtual safety assessment. The method, which is machine-learning-assisted, actively and iteratively updates the sampling probability based on new simulation results. The crash-causation model is based on off-road glances and a distribution of driver maximum decelerations in critical situations. A simple time-to-collision-based AEB algorithm was used to demonstrate the assessment process as well as the benefits of combining crash-causation-model-based scenario generation and optimal subsampling. The sampling methods are designed to target specific safety benefit indicators, such as impact speed reduction and crash avoidance rate. The results of the study show that the proposed sampling method requires almost 50% fewer simulations than traditional importance sampling.Future work aims to focus on applying the active sampling method to driver-model-based car-to-vulnerable road user (VRU) scenario generation. In addition to assessing conflict and crash avoidance system performance, a novel stopping criterion based on Bayesian future prediction will be further developed and demonstrated for use in experiments (e.g., as part of developing driver models) and virtual simulations (e.g., using driver-behavior-based crash-causation models). This criterion will be able to indicate when studies are unlikely to yield actionable results within the budget available, facilitating the decision to discontinue them while they are being run

    Modeling Drivers’ Strategy When Overtaking Cyclists in the Presence of Oncoming Traffic

    Get PDF
    Overtaking a cyclist on a two-lane rural road with oncoming traffic is a challenging task for any driver. Failing this task can lead to severe injuries or even death, because of the potentially high impact speed in a possible collision. To avoid a rear-end collision with the cyclist, drivers need to make a timely and accurate decision about whether to steer and overtake the cyclist, or brake and let the oncoming traffic pass first. If this decision is delayed, for instance because the driver is distracted, neither braking nor steering may eventually keep the driver from crashing—at that point, rear-ending a cyclist may be the safest alternative for the driver. Active safety systems such as forward collision warning that help drivers being alert and avoiding collisions may be enhanced with driver models to reduce activations perceived as false positive. In this study, we developed a driver model based on logistic regression using data from a test-track experiment. The model can predict the probability and confidence of drivers braking and steering while approaching a cyclist during an overtaking, and therefore this model may improve collision warning systems. In both an in-sample and out-of-sample evaluation, the model identified drivers’ intent to overtake with high accuracy (0.99 and 0.90, respectively). The model can be integrated into a warning system that leverages the deviance of the actual driver behavior from the behavior predicted by the model to allow timely warnings without compromising driver acceptance
    • …
    corecore