94,197 research outputs found

    Performance evaluation of spread spectrum system with cochannel interference through a nonlinear channel

    Get PDF
    This thesis deals with the problem of more than one subscriber transmitting data signals through a common satellite repeater using code division multiplexing to separate the signals. We are concerned with the problem of amplifying two DS spread spectrum signals, both QPSK or BPSK modulated, in a common device in which limiting occurs. One signal is considered the signal we desire to receive, and the other, having the same nominal carrier frequency with a small random offset, is considered to be a cochannel interferer. The case of a cochannel interferer on the uplink and downlink in QPSK signalling and BPSK signalling systems is analyzed in detail. This is an important practical problem in code division multiple access satellite communication systems, which usually contain limiting in the satellite amplifier, often in the form of a saturated traveling wave tube amplifier. The satellite repeater is modeled using a bandpass hard limiter. The inverse Fourier transform method, which is applicable to the analysis of PN spread spectrum systems is applied to calculate the output of the bandpass hard limiter. The limiter output plus AWGN is taken to be the input of a correlation receiver for which we calculate the probability of error as function of the signal to noise and, signal to interference ratios. From these results we can determine the effect on error performance due to the inclusion of a bandpass limiter in the transmission path. The assumptions made in deriving the theoretical performance of the system have been checked by simulating the entire system using the BOSS software package. The results of the simulation show good agreement with the theoretical calculations within 1 to 2 dB in SNR. In addition by means of simulation we were able to explore some features of the system that could not be addressed analytically, such as the effect of unbalanced codes on system performance

    Blind Estimation of Multiple Carrier Frequency Offsets

    Full text link
    Multiple carrier-frequency offsets (CFO) arise in a distributed antenna system, where data are transmitted simultaneously from multiple antennas. In such systems the received signal contains multiple CFOs due to mismatch between the local oscillators of transmitters and receiver. This results in a time-varying rotation of the data constellation, which needs to be compensated for at the receiver before symbol recovery. This paper proposes a new approach for blind CFO estimation and symbol recovery. The received base-band signal is over-sampled, and its polyphase components are used to formulate a virtual Multiple-Input Multiple-Output (MIMO) problem. By applying blind MIMO system estimation techniques, the system response is estimated and used to subsequently transform the multiple CFOs estimation problem into many independent single CFO estimation problems. Furthermore, an initial estimate of the CFO is obtained from the phase of the MIMO system response. The Cramer-Rao Lower bound is also derived, and the large sample performance of the proposed estimator is compared to the bound.Comment: To appear in the Proceedings of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Athens, Greece, September 3-7, 200
    corecore