1,724 research outputs found

    Analysis of human-robot spatial behaviour applying a qualitative trajectory calculus

    Get PDF
    The analysis and understanding of human-robot joint spatial behaviour (JSB) such as guiding, approaching, departing, or coordinating movements in narrow spaces and its communicative and dynamic aspects are key requirements on the road towards more intuitive interaction, safe encounter, and appealing living with mobile robots. This endeavours demand for appropriate models and methodologies to represent JSB and facilitate its analysis. In this paper, we adopt a qualitative trajectory calculus (QTC) as a formal foundation for the analysis and representation of such spatial behaviour of a human and a robot based on a compact encoding of the relative trajectories of two interacting agents in a sequential model. We present this QTC together with a distance measure and a probabilistic behaviour model and outline its usage in an actual JSB study.We argue that the proposed QTC coding scheme and derived methodologies for analysis and modelling are flexible and extensible to be adapted for a variety of other scenarios and studies. I

    Towards modelling group-robot interactions using a qualitative spatial representation

    Get PDF
    This paper tackles the problem of finding a suitable qualitative representation for robots to reason about activity spaces where they carry out tasks interacting with a group of people. The Qualitative Spatial model for Group Robot Interaction (QS-GRI) defines Kendon-formations depending on: (i) the relative location of the robot with respect to other individuals involved in that interaction; (ii) the individuals' orientation; (iii) the shared peri-personal distance; and (iv) the role of the individuals (observer, main character or interactive). The evolution of Kendon-formations between is studied, that is, how one formation is transformed into another. These transformations can depend on the role that the robot have, and on the amount of people involved.Postprint (author's final draft

    A probabilistic model of human-robot spatial interaction using a qualitative trajectory calculus

    Get PDF
    In this paper we propose a probabilistic model for Human-Robot Spatial Interaction (HRSI) using a Qualitative Trajectory Calculus (QTC). In particular, we will build on previous work representing HRSI as a Markov chain of QTC states and evolve this to an approach using a Hidden Markov Model representation. Our model accounts for the invalidity of certain transitions within the QTC to reduce the complexity of the probabilistic model and to ensure state sequences in accordance to this representational framework. We show the appropriateness of our approach by using the probabilistic model to encode different HRSI behaviours observed in a human-robot interaction study and show how the models can be used to classify these behaviours reliably. Copyright © 2014, Association for the Advancement of Artificial Intelligence. All rights reserved

    A computational model of human-robot spatial interactions based on a qualitative trajectory calculus

    Get PDF
    In this paper we propose a probabilistic sequential model of Human-Robot Spatial Interaction (HRSI) using a well-established Qualitative Trajectory Calculus (QTC) to encode HRSI between a human and a mobile robot in a meaningful, tractable, and systematic manner. Our key contribution is to utilise QTC as a state descriptor and model HRSI as a probabilistic sequence of such states. Apart from the sole direction of movements of human and robot modelled by QTC, attributes of HRSI like proxemics and velocity profiles play vital roles for the modelling and generation of HRSI behaviour. In this paper, we particularly present how the concept of proxemics can be embedded in QTC to facilitate richer models. To facilitate reasoning on HRSI with qualitative representations, we show how we can combine the representational power of QTC with the concept of proxemics in a concise framework, enriching our probabilistic representation by implicitly modelling distances. We show the appropriateness of our sequential model of QTC by encoding different HRSI behaviours observed in two spatial interaction experiments. We classify these encounters, creating a comparative measurement, showing the representational capabilities of the model

    Social distance augmented qualitative trajectory calculus for human-robot spatial interaction

    Get PDF
    In this paper we propose to augment a wellestablished Qualitative Trajectory Calculus (QTC) by incorporating social distances into the model to facilitate a richer and more powerful representation of Human-Robot Spatial Interaction (HRSI). By combining two variants of QTC that implement different resolutions and switching between them based on distance thresholds we show that we are able to both reduce the complexity of the representation and at the same time enrich QTC with one of the core HRSI concepts: proxemics. Building on this novel integrated QTC model, we propose to represent the joint spatial behaviour of a human and a robot employing a probabilistic representation based on Hidden Markov Models. We show the appropriateness of our approach by encoding different HRSI behaviours observed in a human-robot interaction study and show how the models can be used to represent and classify these behaviours using social distance-augmented QTC

    Effects of Training Data Variation and Temporal Representation in a QSR-Based Action Prediction System

    Get PDF
    Understanding of behaviour is a crucial skill for Artificial Intelligence systems expected to interact with external agents – whether other AI systems, or humans, in scenarios involving co-operation, such as domestic robots capable of helping out with household jobs, or disaster relief robots expected to collaborate and lend assistance to others. It is useful for such systems to be able to quickly learn and re-use models and skills in new situations. Our work centres around a behaviourlearning system utilising Qualitative Spatial Relations to lessen the amount of training data required by the system, and to aid generalisation. In this paper, we provide an analysis of the advantages provided to our system by the use of QSRs. We provide a comparison of a variety of machine learning techniques utilising both quantitative and qualitative representations, and show the effects of varying amounts of training data and temporal representations upon the system. The subject of our work is the game of simulated RoboCup Soccer Keepaway. Our results show that employing QSRs provides clear advantages in scenarios where training data is limited, and provides for better generalisation performance in classifiers. In addition, we show that adopting a qualitative representation of time can provide significant performance gains for QSR systems

    Motion Categorisation: Representing Velocity Qualitatively

    Get PDF
    International audienceCategorising is arguably one of the first steps in cognition, because it enables high-level cognitive processing. For a similar reason, categorising is a first step—a preprocessing step—in artificial intelligence, specifically in decision-making, reasoning, and natural language processing. In this paper we categorise the motion of entities. Such categorisations, also known as qualitative representations, represent the preprocessing step for navigation problems with dynamical obstacles. As a central result, we present a general method to generate categorisations of motion based on categorisations of space. We assess its general validity by generating two categorisations of motion from two different spatial categorisations. We show examples of how the categorisations of motion describe and control trajectories. And we establish its soundness in cognitive and mathematical principles

    QTC3D: extending the qualitative trajectory calculus to three dimensions

    Get PDF
    Spatial interactions between agents (humans, animals, or machines) carry information of high value to human or electronic observers. However, not all the information contained in a pair of continuous trajectories is important and thus the need for qualitative descriptions of interaction trajectories arises. The Qualitative Trajectory Calculus (QTC) (Van de Weghe, 2004) is a promising development towards this goal. Numerous variants of QTC have been proposed in the past and QTC has been applied towards analyzing various interaction domains. However, an inherent limitation of those QTC variations that deal with lateral movements is that they are limited to two-dimensional motion; therefore, complex three-dimensional interactions, such as those occurring between flying planes or birds, cannot be captured. Towards that purpose, in this paper QTC3D is presented: a novel qualitative trajectory calculus that can deal with full three-dimensional interactions. QTC3D is based on transformations of the Frenet-Serret frames accompanying the trajectories of the moving objects. Apart from the theoretical exposition, including definition and properties, as well as computational aspects, we also present an application of QTC3D towards modeling bird flight. Thus, the power of QTC is now extended to the full dimensionality of physical space, enabling succinct yet rich representations of spatial interactions between agents

    From sequence to trajectory and vice versa: solving the inverse QTC problem and coping with real-world trajectories

    Get PDF
    Spatial interactions between agents carry information of high value to human observers, as exemplified by the high-level interpretations that humans make when watching the Heider and Simmel movie, or other such videos which just contain motions of simple objects, such as points, lines and triangles. However, not all the information contained in a pair of continuous trajectories is important; and thus the need for qualitative descriptions of interaction trajectories arises. Towards that purpose, Qualitative Trajectory Calculus (QTC) has been proposed in (Van de Weghe, 2004). However, the original definition of QTC handles uncorrupted continuous-time trajectories, while real-world signals are noisy and sampled in discrete-time. Also, although QTC presents a method for transforming trajectories to qualitative descriptions, the inverse problem has not yet been studied. Thus, in this paper, after discussing several aspects of the transition from ideal QTC to discrete-time noisy QTC, we introduce a novel algorithm for solving the QTC inverse problem; i.e. transforming qualitative descriptions to archetypal trajectories that satisfy them. Both of these problems are particularly important for the successful application of qualitative trajectory calculus to Human-Robot Interaction
    • …
    corecore