10,265 research outputs found

    Chip-scale WDM devices using photonic crystals

    Get PDF
    Issued as final reportAir Force Office of Scientific Researc

    Sharp bends in photonic crystal waveguides as nonlinear Fano resonators

    Get PDF
    We demonstrate that high transmission through sharp bends in photonic crystal waveguides can be described by a simple model of the Fano resonance where the waveguide bend plays a role of a specific localized defect. We derive effective discrete equations for two types of the waveguide bends in two-dimensional photonic crystals and obtain exact analytical solutions for the resonant transmission and reflection. This approach allows us to get a deeper insight into the physics of resonant transmission, and it is also useful for the study and design of power-dependent transmission through the waveguide bends with embedded nonlinear defects.Comment: 8 pages, 5 figures, submitted to Optics Expres

    Design and Fabrication of Silicon Photonic Crystal Optical Waveguides

    Get PDF
    We have designed and fabricated waveguides that incorporate two-dimensional (2-D) photonic crystal geometry for lateral confinement of light, and total internal reflection for vertical confinement. Both square and triangular photonic crystal lattices were analyzed. A three-dimensional (3-D) finite-difference time-domain (FDTD) analysis was used to find design parameters of the photonic crystal and to calculate dispersion relations for the guided modes in the waveguide structure. We have developed a new fabrication technique to define these waveguides into silicon-on-insulator material. The waveguides are suspended in air in order to improve confinement in the vertical direction and symmetry properties of the structure. High-resolution fabrication allowed us to include different types of bends and optical cavities within the waveguides

    Physics of quantum light emitters in disordered photonic nanostructures

    Full text link
    Nanophotonics focuses on the control of light and the interaction with matter by the aid of intricate nanostructures. Typically, a photonic nanostructure is carefully designed for a specific application and any imperfections may reduce its performance, i.e., a thorough investigation of the role of unavoidable fabrication imperfections is essential for any application. However, another approach to nanophotonic applications exists where fabrication disorder is used to induce functionalities by enhancing light-matter interaction. Disorder leads to multiple scattering of light, which is the realm of statistical optics where light propagation requires a statistical description. We review here the recent progress on disordered photonic nanostructures and the potential implications for quantum photonics devices.Comment: Review accepted for publication in Annalen der Physi

    Photonic crystals for confining, guiding, and emitting light

    Get PDF
    We show that by using the photonic crystals, we can confine, guide, and emit light efficiently. By precise control over the geometry and three-dimensional design, it is possible to obtain high quality optical devices with extremely small dimensions. Here we describe examples of high-Q optical nanocavities, photonic crystal waveguides, and surface plasmon enhanced light-emitting diode (LEDs)

    Time reversal constraint limits unidirectional photon emission in slow-light photonic crystals

    Get PDF
    Photonic crystal waveguides are known to support C-points - point-like polarisation singularities with local chirality. Such points can couple with dipole-like emitters to produce highly directional emission, from which spin-photon entanglers can be built. Much is made of the promise of using slow-light modes to enhance this light-matter coupling. Here we explore the transition from travelling to standing waves for two different photonic crystal waveguide designs. We find that time-reversal symmetry and the reciprocal nature of light places constraints on using C-points in the slow-light regime. We observe two distinctly different mechanisms through which this condition is satisfied in the two waveguides. In the waveguide designs we consider, a modest group-velocity of vgc/10v_g \approx c/10 is found to be the optimum for slow-light coupling to the C-points.Comment: 16 pages, 4 figure

    Methods for controlling positions of guided modes of photonic-crystal waveguides

    Get PDF
    We analyze different methods for controlling positions of guided modes of planar photonic-crystal waveguides. Methods based both on rearrangements of holes in the photonic-crystal lattice and on changes of hole sizes are presented. The ability to tune frequencies of guided modes within a frequency bandgap is necessary to achieve efficient guiding of light within a waveguide, as well as to match frequencies of eigenmodes of different photonic-crystal-based devices for the purpose of good coupling between them. We observe and explain the appearance of acceptor-type modes in donor-type waveguides

    Self-trapping of light and nonlinear localized modes in 2D photonic crystals and waveguides

    Get PDF
    We overview our recent results on the nonlinear localized modes in two-dimensional (2D) photonic crystals and photonic-crystal waveguides. Employing the technique based on the Green function, we describe the existence domains for nonlinear guided modes in photonic crystal waveguides and study their unique properties including bistability. We also show that low-amplitude nonlinear modes near the band edge of a reduced-symmetry 2D square-lattice photonic crystals, which are usually unstable, can be stabilized due to effective long-range linear and nonlinear interactions.Comment: 20 pages (LaTeX) with 12 figures (EPS

    Role of distributed Bragg reflection in photonic-crystal optical waveguides

    Get PDF
    We show that the properties of the confined modes of a photonic band-gap (PBG) waveguide can be calculated with good accuracy by replacing it with an effective corrugated waveguide that represents only the structure in the vicinity of the middle slab. Such a replacement is helpful in the design of the PBG waveguides as well as in the understanding and analysis of the coupling of different waveguides
    corecore