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Abstract: We demonstrate that high transmission through sharp bends in
photonic crystal waveguides can be described by a simple model of the Fano
resonance where the waveguide bend plays a role of a specific localized
defect. We derive effective discrete equations for two types of the waveguide
bends in two-dimensional photonic crystals and obtain exact analytical
solutions for the resonant transmission and reflection. This approach allows
us to get a deeper insight into the physics of resonant transmission, and it
is also useful for the study and design of power-dependent transmission
through the waveguide bends with embedded nonlinear defects.
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1. Introduction

Photonic crystals (PCs) are artificial dielectric structures with a periodic modulation in the re-
fractive index that create regions of forbidden frequencies known as photonic band gaps [1].
The existence of the photonic band gaps can change dramatically the properties of light al-
lowing the realization of ultra-compact and multi-functional optical devices. One of the most
fascinating properties of photonic crystals is their ability to guide electromagnetic waves in
narrow waveguides created by a sequence of line defects, including light propagation through
extremely sharp waveguide bends with nearly perfect power transmission [2, 3]. It is believed
that the low-loss transmission through sharp waveguide bends in photonic crystals is one of
the most promising approaches to combine several devices inside a compact nanoscale optical
chip.

The main advantage in achieving low radiation losses for the light transmission through sharp
waveguide bends is based on the existence of the photonic band gap allowing to confine light
inside a narrow defect waveguide due to the effect of the resonant Bragg scattering, reducing
only the reflection losses of the bend design. Recent studies addressed the issue of an improved
design of sharp waveguide bends in two-dimensional photonic crystals and suggested that the
transmission losses can be less then 5% [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

The main purpose of this paper is twofold. First, we demonstrate that transmission of elec-
tromagnetic waves through sharp bends of photonic crystal waveguides can be described by a
simple discrete model where the waveguide bend plays a role of a specific localized defect. By
employing the semi-analytical approach based on the Green’s function formalism [14, 15, 16],
we derive effective discrete equations which allow us to describe the bend transmission as a
special case of the so-called Fano resonance [17], recently discussed for the wave propagation
in discrete chains [18]. We demonstrate how to introduce the effective discrete model for the
Fano resonance by selecting two common designs of the waveguide bends in two-dimensional
photonic crystals created by a lattice of rods, and obtain exact analytical solutions for the res-
onant transmission and reflection. We show that asymmetric shapes of the transmission curves
observed for the waveguide bends can be understood in terms of the Fano resonance which
originates from the interaction between continuum waves and an effective localized state asso-
ciated with the waveguide bend that provides an additional propagation channel for the wave
transmission and, therefore, leads to the constructive or destructive interference. Second, we
show that this approach allows us not only get a deeper physical insight but it is also useful to
study the nonlinear transmission through the waveguide bends with nonlinear defects.

The paper is organized as follow. In Section 2 we derive the effective discrete equations
for the case of two-dimensional photonic crystal waveguides based on the Green’s function
technique. We employ the approach earlier suggested by Mingaleev et al. [14, 15, 16], but take
into account the effect of the long-range interaction only in the vicinity of the waveguide bend.
This allows us to derive an effective discrete Fano model where the waveguide bend plays a role
of a special localized defect, and also suggest an effective way for predicting and controlling the
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Fig. 1. (a) Spatial structure of the coupling coefficients Jnm(ω) of the effective discrete
model (3) at ω = 0.4 × 2πc/a. (b) Dependence of the specific coupling coefficients
(marked) on the frequency ω .

properties of different types of the waveguide bends. Using this model, in Section 3 and Section
4 we study the wave transmission in the linear and nonlinear regimes, respectively. Section 5
concludes the paper.

2. Effective discrete model

First, we derive an effective discrete model for the wave transmission through a sharp
waveguide bend by employing and modifying the conceptual approach suggested earlier by
Mingaleev et al. [14, 15]. We consider a two-dimensional photonic crystal created by a square
lattice (with the period a) of dielectric rods in air (εbg = 1). The rods have the radius r = 0.18a
and the dielectric constant εrod = 11.56. We study in-plane light propagation in this photonic
lattice described by the electric field E(x,t) = exp(−iωt)E(x|ω) polarized parallel to the rods,
and reduce the Maxwell’s equations to the scalar eigenvalue problem

[
∇2 +

(ω
c

)2
ε(x)

]
E(x|ω) = 0 . (1)

For given parameters, this square lattice of rods is known to possess a large TM band gap (38%)
between the frequencies ω = 0.303×2πc/a and ω = 0.444×2πc/a.

We create a waveguide by replacing some of the lattice rods by the defect rods with the radius
rd , or simply by removing some rods of the lattice. To describe the structure with defects, we
decompose the permittivity function ε(x) into a sum of the periodic part and the defect-induced
contribution, ε(x) = εp(x)+ δε(x), and rewrite Eq. (1) in the integral form [14],

E(x|ω) =
(ω

c

)2 ∫
d2yG(x,y|ω)δε(y)E(y|ω) , (2)

where G(x,y|ω) is the standard Green’s function. If the radius of the defect rod r d is sufficiently
small, the electric field E(x|ω) inside the rod is almost constant, and the integral (2) can be
easily evaluated. This allows us to derive a set of discrete equations for the electric field

En,m = ∑
k,l

Jn−k,m−l(ω)δεk,lEk,l (3)
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Fig. 2. Schematic view of two designs of the waveguide bends studied in the paper. Empty
circles correspond to removed rods, dashed lines denote the effective coupling. Yellow
circles mark the defects with different dielectric constant εd(|E|), which can be nonlinear.

where

Jn,m(ω) =
(ω

c

)2 ∫
rd

d2yG(xn,xm +y|ω) (4)

are the frequency-dependent effective coupling coefficients and

δεn,m = εn,m − εrod , (5)

are the defect-induced changes of the lattice dielectric function, where ε n,m is the dielectric
constant of the defect rod located at the site (n,m).

In general, the effective coupling coefficients |Jn,m(ω)| decay slow in space, as shown in
Fig. 1(a). This slow decay introduces effective long-range interaction (LRI) from site to site
of the waveguide, which becomes crucially important for the waveguide bends. In reality, we
define a finite distance L of this (formally infinite) interaction by assuming that all coupling
coefficients with the numbers |n− k|> L and |m− l|> L vanish. As demonstrated in Ref. [15],
the case L = 6 gives already an excellent agreement with the results of the finite-difference
time-domain numerical simulations.

Unlike the previous studies of the effective discrete model, here we are interested in the
light propagation through two types of the 90 0 waveguide bends shown in Fig. 2 created by
removed rods and additional defect rods with dielectric constant ε d placed at the corner; the
defect rod can also be nonlinear. Due to the effective long-range interaction, the corner in the
bend waveguide can be considered as a special type of a defect; this resemblance is indeed
correct and it explains the Fano-type resonances in the transmission as discussed below.

3. Linear transmission

In this section, we consider the linear transmission through the waveguide bends when all corner
defects are assumed to be linear. In order to show analytically that the waveguide bend generates
an effective defect state and it can be described by a discrete model of the Fano resonance,
we proceed in two steps making simplifications in the general model (3). For simplicity, we
consider the waveguide bend of the type A, as shown in Fig. 2.

As the first step, we reduce the effective length of the long-range interaction in the straight
parts of the waveguide bend taking it as L = 1. This approximation corresponds to the famil-
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iar tight-binding approximation that takes into account only the coupling between the nearest
neighbors in a discrete chain. However, we take into account the nonlocal coupling near the
sharp bend, and this requires to introduce an additional coupling of two sites around the corner
as shown in Fig. 2 for the bend of the type A. It turns out that this simple approximation allows
us to describe qualitatively all important properties and the key physics of the waveguide bend.

To derive the effective discrete model corresponding to the bend design shown in Fig. 2 (left),
we remove two semi-infinite rows of rods and write the dielectric function in the form,

εn,m = εbg , for n ≤−1 and m = 0 or n = 0 and m ≥ 1 . (6)

At the corner of the waveguide bend, we place a defect rod with the dielectric constant ε 0,0 = εd .
Equations (3) for the electric field inside the defect rods can be written explicitly as

(1− J0,0δε0)En,0 = δε0J1,0(En+1,0 +En−1,0), n < −1,

(1− J0,0δε0)E0,m = δε0J0,1(E0,m+1 +Em,n−1), m > 1,

(1− J0,0δε0)E−1,0 = J1,0(δε1E0,0 + δε0E−2,0)+ J1,1δε0E0,1, (7)

(1− J0,0δε1)E0,0 = δε0(J0,1E0,1 + J1,0E−1,0),
(1− J0,0δε0)E0,1 = J0,1(δε1E0,0 + δε0E0,2)+ J1,1δε0E−1,0,

where δε0 = εbg − εrod and δε1 = εd − εrod. Importantly, the resulting set of coupled equa-
tions present a discrete model that can be compared with the discrete models earlier studied in
Ref. [18], for which the existence of the Fano resonance has been demonstrated analytically.

The first two equations in the system (7) allow us to obtain the dispersion relation for the
bend waveguide far away from the corner. Due to the symmetry of the photonic crystal, the
coupling terms J0,1 and J1,0 coincide and, therefore, we obtain the waveguide dispersion

cosk =
1− δε0J0,0

δε0J0,1
, (8)

where k is the wavenumber for the waves propagating along the waveguide. Other equations in
the system (7) allow us to calculate the transmission coefficient of the waveguide bend,

T =
4a2 sin2 k
|b(c−b)|2 , (9)

where we use the notations

a = (J11 + J2
0,1δε1 − J0,0J1,1δε1)J0,1δε2

0 , b = (J0,0 + exp(ik)J0,1 − J1,1)δε0 −1 ,

c = (J2
0,0 −2J2

0,1 + J0,0J1,1 + exp(ik)J0,0J0,1)δε0δε1 − J0,0δε1 . (10)

Important information about the resonant transmission follows from the study of zeros of the
transmission coefficient (9). Except for the band edges (k = 0,π), the transmission coefficient
vanishes when a = 0, i.e. when

J0,0J1,1δε1 = J11 + J2
0,1δε1. (11)

As the second step, we approximate the dependence of the coupling coefficients J n,m in
the effective discrete model on the frequency ω , considering the specific results presented in
Fig. 1(b). In the frequency interval [0.32,0.42], we find the following approximation

J0,0 = ω −ωd, J0,1 = C, J1,1 = VJ0,0 = V (ω −ωd), (12)
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Fig. 3. Transmission coefficient of the waveguide bend for different values of the dielectric
constant εd . The Fano resonance is observed when the value of the dielectric constant of
the defect rod εd approaches the value of the dielectric constant of the lattice rod εrod. The
plot εd = εbg corresponds to the case when a rod is removed from the bend corner, whereas
the plot εd = εrod corresponds to the case when the lattice rod remains at the corner. For
comparison, the crosses (×) show the results of the direct FDTD numerical calculations.

where ωd is the frequency of a single embedded defect (in our case, ω d ≈ 0.4), C and V are
constants (C ≈ 0.035 and V ≈ 0.07). By substituting Eq. (12) into Eq. (11), we obtain

δε1Vω2 − (2δε1ωd + 1)Vω +(Vδε1ω2
d +Vωd −C2δε1) = 0, (13)

which has two solutions

ωF = ωd +
1

2δε1
±

[
C2

V
+

1

4δε2
1

]1/2

. (14)

According to these results, there exists a possibility for two perfect reflections and, therefore,
two Fano resonances. This is due to the linear frequency dependence of two coupling terms
(12), the on-site term J0,0 and the cross-coupling term J1,1. In our model, we have only one free
parameter— the dielectric constant εd of the defect rod at the corner. Then, when δε 1 ≈ 0 at
list one zero of the transmission lies inside the propagation spectrum (8), ω 0 < ωF < ωπ . As
a result, we predict that when εd ≈ εrod the perfect reflection through the waveguide bend of
the type A should be observed, and numerical results confirm this prediction (see Fig. 3). We
plot the transmission coefficient for two different values of the interaction, L = 1 and L = 6.
This shows that the tight-binding approximation (L = 1) still gives reasonable results in aver-
age, and it works especially well near the Fano resonance where our model works nicely. For
comparison, on Fig.3(c) we show the results of the direct numerical simulations of the structure
by the finite-difference time-domain (FDTD) method, which demonstrate large effective losses
but confirm the validity of our approach.
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Fig. 4. Transmission coefficient through the waveguide bend with a (yellow) defect rod
placed outside the corner. In this case, there exist two Fano resonances, one of them is
characterized by an asymmetric profile and corresponds to the perfect transmission.

Both the effective model and calculation of the transmission coefficient for the waveguide
bend of the type B (see Fig.2) are similar. The only difference between these two types of the
bend design is the existence of additional coupling terms to the the defect state. As was shown
in Ref. [18], by increasing the number of the coupling terms we only shift the position of the
Fano resonance, either transmission or reflection. In our case, the coupling is small (V � 1), so
that the renormalization is negligible. For the waveguide bend of the type A, the Fano resonance
manifests itself as the perfect reflection only, whereas the perfect transmission lies outside the
waveguide spectrum. By analyzing the transmission coefficient for the type B bend, we can
show that in this case the perfect transmission may move to the waveguide spectrum when
εd ≈ εbg. This result coincides with the well-known result of the perfect transmission through
the waveguide bend of the type B when the rod is removed at the corner, ε d = εbg [2, 3].

According to Fig. 3, by increasing the dielectric constant ε d of the defect rod at the corner,
we can achieve the perfect resonant reflection. However, the transmission itself becomes very
low. However, it was shown in Ref. [18] that when the coupling to the defect is very small the
frequency of the perfect transmission is located very close to that of the perfect reflection; this
results in a narrow and sharp Fano resonance. We employ this idea for the waveguide bend of
the type A and replace one lattice rod by a defect rod outside the corner, as shown in the insert
of Fig. 4. In this case, we obtain the perfect transmission for a particular frequency by varying
the dielectric constant of the defect rod, see Fig. 4. Here, there exist two Fano resonances. One
of them is broad, and it manifests itself as the perfect reflection only, being similar to the case
of Fig. 3(c); it can be treated as the background transmission. The second resonance possesses
a sharp asymmetric profile with both resonant transmission and reflection. Our analysis shows
that for this design the so-called double Fano resonance can exists due to the specific frequency
dependence of the coupling coefficients. By varying the dielectric constant of the defect rod
placed outside the corner, we shift the asymmetric resonance whereas preserving the other one.
When we simply remove the rod outside the corner (i.e. at ε d = εbg), these two resonances
are located very close and interact with each other. As a result, the perfect transmission is
accompanied by two perfect reflections, and this effect can be use to design a very efficient
filter based on the bend waveguide transmission.
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Fig. 5. Nonlinear transmission calculated for two types of the waveguide bends shown in
Fig. 2. In both the cases, the Fano resonance is observed as the perfect reflection. The
waveguide bend of the type B allows the perfect transmission that can be also tuned.

4. Nonlinear transmission

Finally, we apply our effective discrete model to the case of the nonlinear transmission through
the waveguide bend with embedded nonlinear defect rods. In this case, we assume that the
(green) defect rods placed at the bend corner (see Fig. 2) possesses a Kerr-type nonlinearity

εd(|E|) = εd + λ |E|2 . (15)

For definiteness, in our numerical simulations we take the value εd = 1.96 and use the rescaled
coefficient λ = 1, these data should correspond to some polymer materials. In the nonlinear
regime, the transmission of the waveguide bend depends on the intensity of the incoming light.
This gives us an additional possibility to control the transmission properties of the waveguide
bend by changing the properties of the nonlinear defect.

Our analysis shows that the presence of nonlinear defect does not remove the Fano resonance
itself, but instead it shifts the position of the resonant frequency. As a result, we can tune
the value of the resonant frequency by the input light intensity, the resonant scattering can be
observed for almost all frequencies of the waveguide spectrum [18]. Figure 5 shows the power-
dependent transmission for two types of the waveguide bends with embedded nonlinear defects
at the corner. For the type B bend, the perfect transmission is observed as well. The intensity-
dependent transmission allows us to control the light propagation through the waveguide bend
from 0% up to 100% by simply tuning the light intensity. From another hand, we can achieve
100% transmission thought the type B bend for almost all frequencies from the spectral range
by choosing a proper intensity of the incoming light.

5. Conclusions

We have analyzed the conditions for high transmission through sharp waveguide bends using
the effective discrete equations derived for two-dimensional photonic crystal waveguides. We
have demonstrated that the physics of this effect can be understood with the help of a simple
discrete model of the Fano resonance where the waveguide bend plays a role of a specific lo-
calized defect. Using this model, we have obtained exact analytical solutions for the resonant
transmission and reflection of two types of the waveguide bends, in both linear and nonlinear
regimes. We believe our approach would allow to get a deeper insight into the physics of reso-
nant transmission through waveguide bends, and it can be useful for understanding other types
of resonant effects in two- and three-dimensional photonic crystal waveguides and circuits.
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