1,533 research outputs found

    Braided Convolutional Codes -- A Class of Spatially Coupled Turbo-Like Codes

    Get PDF
    In this paper, we investigate the impact of spatial coupling on the thresholds of turbo-like codes. Parallel concatenated and serially concatenated convolutional codes as well as braided convolutional codes (BCCs) are compared by means of an exact density evolution (DE) analysis for the binary erasure channel (BEC). We propose two extensions of the original BCC ensemble to improve its threshold and demonstrate that their BP thresholds approach the maximum-a-posteriori (MAP) threshold of the uncoupled ensemble. A comparison of the different ensembles shows that parallel concatenated ensembles can be outperformed by both serially concatenated and BCC ensembles, although they have the best BP thresholds in the uncoupled case.Comment: Invited paper, International Conference on Signal Processing and Communications, SPCOM 2014, Bangalore, India, July 22-25, 201

    Spatially Coupled Turbo Codes: Principles and Finite Length Performance

    Get PDF
    In this paper, we give an overview of spatially coupled turbo codes (SC-TCs), the spatial coupling of parallel and serially concatenated convolutional codes, recently introduced by the authors. For presentation purposes, we focus on spatially coupled serially concatenated codes (SC-SCCs). We review the main principles of SC-TCs and discuss their exact density evolution (DE) analysis on the binary erasure channel. We also consider the construction of a family of rate-compatible SC-SCCs with simple 4-state component encoders. For all considered code rates, threshold saturation of the belief propagation (BP) to the maximum a posteriori threshold of the uncoupled ensemble is demonstrated, and it is shown that the BP threshold approaches the Shannon limit as the coupling memory increases. Finally we give some simulation results for finite lengths.Comment: Invited paper, IEEE Int. Symp. Wireless Communications Systems (ISWCS), Aug. 201

    Windowed Decoding of Protograph-based LDPC Convolutional Codes over Erasure Channels

    Full text link
    We consider a windowed decoding scheme for LDPC convolutional codes that is based on the belief-propagation (BP) algorithm. We discuss the advantages of this decoding scheme and identify certain characteristics of LDPC convolutional code ensembles that exhibit good performance with the windowed decoder. We will consider the performance of these ensembles and codes over erasure channels with and without memory. We show that the structure of LDPC convolutional code ensembles is suitable to obtain performance close to the theoretical limits over the memoryless erasure channel, both for the BP decoder and windowed decoding. However, the same structure imposes limitations on the performance over erasure channels with memory.Comment: 18 pages, 9 figures, accepted for publication in the IEEE Transactions on Information Theor

    Spatially-Coupled Random Access on Graphs

    Full text link
    In this paper we investigate the effect of spatial coupling applied to the recently-proposed coded slotted ALOHA (CSA) random access protocol. Thanks to the bridge between the graphical model describing the iterative interference cancelation process of CSA over the random access frame and the erasure recovery process of low-density parity-check (LDPC) codes over the binary erasure channel (BEC), we propose an access protocol which is inspired by the convolutional LDPC code construction. The proposed protocol exploits the terminations of its graphical model to achieve the spatial coupling effect, attaining performance close to the theoretical limits of CSA. As for the convolutional LDPC code case, large iterative decoding thresholds are obtained by simply increasing the density of the graph. We show that the threshold saturation effect takes place by defining a suitable counterpart of the maximum-a-posteriori decoding threshold of spatially-coupled LDPC code ensembles. In the asymptotic setting, the proposed scheme allows sustaining a traffic close to 1 [packets/slot].Comment: To be presented at IEEE ISIT 2012, Bosto

    Spatially Coupled Turbo Codes

    Get PDF
    In this paper, we introduce the concept of spatially coupled turbo codes (SC-TCs), as the turbo codes counterpart of spatially coupled low-density parity-check codes. We describe spatial coupling for both Berrou et al. and Benedetto et al. parallel and serially concatenated codes. For the binary erasure channel, we derive the exact density evolution (DE) equations of SC-TCs by using the method proposed by Kurkoski et al. to compute the decoding erasure probability of convolutional encoders. Using DE, we then analyze the asymptotic behavior of SC-TCs. We observe that the belief propagation (BP) threshold of SC-TCs improves with respect to that of the uncoupled ensemble and approaches its maximum a posteriori threshold. This phenomenon is especially significant for serially concatenated codes, whose uncoupled ensemble suffers from a poor BP threshold.Comment: in Proc. 8th International Symposium on Turbo Codes & Iterative Information Processing 2014, Bremen, Germany, August 2014. To appear. (The PCC ensemble is changed with respect to the one in the previous version of the paper. However, it gives identical thresholds

    Threshold Saturation for Spatially Coupled Turbo-like Codes over the Binary Erasure Channel

    Get PDF
    In this paper we prove threshold saturation for spatially coupled turbo codes (SC-TCs) and braided convolutional codes (BCCs) over the binary erasure channel. We introduce a compact graph representation for the ensembles of SC-TC and BCC codes which simplifies their description and the analysis of the message passing decoding. We demonstrate that by few assumptions in the ensembles of these codes, it is possible to rewrite their vector recursions in a form which places these ensembles under the category of scalar admissible systems. This allows us to define potential functions and prove threshold saturation using the proof technique introduced by Yedla et al..Comment: 5 pages, 3figure

    Terminated LDPC Convolutional Codes with Thresholds Close to Capacity

    Full text link
    An ensemble of LDPC convolutional codes with parity-check matrices composed of permutation matrices is considered. The convergence of the iterative belief propagation based decoder for terminated convolutional codes in the ensemble is analyzed for binary-input output-symmetric memoryless channels using density evolution techniques. We observe that the structured irregularity in the Tanner graph of the codes leads to significantly better thresholds when compared to corresponding LDPC block codes.Comment: To appear in the proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200
    • …
    corecore