42,831 research outputs found

    Analysis of computational approaches for motif discovery

    Get PDF
    Recently, we performed an assessment of 13 popular computational tools for discovery of transcription factor binding sites (M. Tompa, N. Li, et al., "Assessing Computational Tools for the Discovery of Transcription Factor Binding Sites", Nature Biotechnology, Jan. 2005). This paper contains follow-up analysis of the assessment results, and raises and discusses some important issues concerning the state of the art in motif discovery methods: 1. We categorize the objective functions used by existing tools, and design experiments to evaluate whether any of these objective functions is the right one to optimize. 2. We examine various features of the data sets that were used in the assessment, such as sequence length and motif degeneracy, and identify which features make data sets hard for current motif discovery tools. 3. We identify an important feature that has not yet been used by existing tools and propose a new objective function that incorporates this feature

    Motif Discovery with Compact Approaches - Design and Applications

    Get PDF
    In the post-genomic era, the ability to predict the behavior, the function, or the structure of biological entities, as well as interactions among them, plays a fundamental role in the discovery of information to help biologists to explain biological mechanisms. In this context, appropriate characterization of the structures under analysis, and the exploitation of combinatorial properties of sequences, are crucial steps towards the development of efficient algorithms and data structures to be able to perform the analysis of biological sequences. Similarity is a fundamental concept in Biology. Several functional and structural properties, and evolutionary mechanisms, can be predicted comparing new elements with already classified elements, or comparing elements with a similar structure of function to infer the common mechanism that is at the basis of the observed similar behavior. Such elements are commonly called motifs. Comparison-based methods for sequence analysis find their application in several biological contexts, such as identification of transcription factor binding sites, finding structural and functional similarities in proteins, and phylogeny. Therefore the development of adequate methodologies for motif discovery is of paramount interests for several fields in computational biology. In motif discovery in biosequences, it is common to assume that statistically significant candidates are those that are likely to hide some biologically significant property. For this purpose all the possible candidates are ranked according to some statistics on words (frequency, over/under representation, etc.). Then they are presented in output for further inspection by a biologist, who identifies the most promising subsequences, and tests them in laboratory to confirm their biological significance. Therefore, when designing algorithms for motif discovery, besides obviously aim at time and space efficiency, particular attention should be devoted to the output representation. In fact, even considering fixed length strings, the size of the candidate set become exponential if exhaustive enumeration is applied. This is already true when only exact matches are considered as candidate occurrences, and worsen if some kind of variability (for example a fixed number of mismatches is allowed). Alternatively, heuristics could be used, however without the warranty of finding the optimal solution. Computational power of nowadays computers can partially reduce these effects, in particular for short length candidates. However, if the size of the output is too big to be analyzed by human inspection the risk is to provide biologists with very fast, but useless tools. A possible solution relies on compact approaches. Compact approaches are based on the partition of the search space into classes. The classes must be designed in such a way that the score used to rank the candidates has a monotone behavior within each class. This allows the identification of a representative of each class, which is the element with the highest score. Consequently, it suffices to compute, and report in output, the score only for the representatives. In fact, we are guaranteed that for each element that has not been ranked there is another one (the representative of the class it belongs to) that is at least equally significant. The final user can then be presented with an output that has the size of the partition, rather than the size of the candidate space, with obvious advantages for the human-based analysis that follows the computer-based filtering of the pattern discovery algorithm. Compact approaches find applications both in searching and discovery frameworks. They can also be applied to several motif models: exact patterns, patterns with given mismatch distribution, patterns with unknown mismatch distribution, profiles (i.e. matrices), and under both i.i.d. and Markov distributions. The purpose of this chapter is to describe the basis of compact approaches, to provide the readers with the conceptual tools for applying compact approaches to the design of their algorithm for biosequence analysis. Moreover, examples of compact approaches that have been successfully developed for several motif models (e.g. exact words, co-occurrences, words with mismatches, etc) will be explained, and experimental results to discuss their power will be presented

    A survey of DNA motif finding algorithms

    Get PDF
    Background: Unraveling the mechanisms that regulate gene expression is a major challenge in biology. An important task in this challenge is to identify regulatory elements, especially the binding sites in deoxyribonucleic acid (DNA) for transcription factors. These binding sites are short DNA segments that are called motifs. Recent advances in genome sequence availability and in high-throughput gene expression analysis technologies have allowed for the development of computational methods for motif finding. As a result, a large number of motif finding algorithms have been implemented and applied to various motif models over the past decade. This survey reviews the latest developments in DNA motif finding algorithms.Results: Earlier algorithms use promoter sequences of coregulated genes from single genome and search for statistically overrepresented motifs. Recent algorithms are designed to use phylogenetic footprinting or orthologous sequences and also an integrated approach where promoter sequences of coregulated genes and phylogenetic footprinting are used. All the algorithms studied have been reported to correctly detect the motifs that have been previously detected by laboratory experimental approaches, and some algorithms were able to find novel motifs. However, most of these motif finding algorithms have been shown to work successfully in yeast and other lower organisms, but perform significantly worse in higher organisms.Conclusion: Despite considerable efforts to date, DNA motif finding remains a complex challenge for biologists and computer scientists. Researchers have taken many different approaches in developing motif discovery tools and the progress made in this area of research is very encouraging. Performance comparison of different motif finding tools and identification of the best tools have proven to be a difficult task because tools are designed based on algorithms and motif models that are diverse and complex and our incomplete understanding of the biology of regulatory mechanism does not always provide adequate evaluation of underlying algorithms over motif models.Peer reviewedComputer Scienc

    Regulatory motif discovery using a population clustering evolutionary algorithm

    Get PDF
    This paper describes a novel evolutionary algorithm for regulatory motif discovery in DNA promoter sequences. The algorithm uses data clustering to logically distribute the evolving population across the search space. Mating then takes place within local regions of the population, promoting overall solution diversity and encouraging discovery of multiple solutions. Experiments using synthetic data sets have demonstrated the algorithm's capacity to find position frequency matrix models of known regulatory motifs in relatively long promoter sequences. These experiments have also shown the algorithm's ability to maintain diversity during search and discover multiple motifs within a single population. The utility of the algorithm for discovering motifs in real biological data is demonstrated by its ability to find meaningful motifs within muscle-specific regulatory sequences

    MEMOFinder: combining _de_ _novo_ motif prediction methods with a database of known motifs

    Get PDF
    *Background:* Methods for finding overrepresented sequence motifs are useful in several key areas of computational biology. They aim at detecting very weak signals responsible for biological processes requiring robust sequence identification like transcription-factor binding to DNA or docking sites in proteins. Currently, general performance of the model-based motif-finding methods is unsatisfactory; however, different methods are successful in different cases. This leads to the practical problem of combining results of different motif-finding tools, taking into account current knowledge collected in motif databases.
*Results:* We propose a new complete service allowing researchers to submit their sequences for analysis by four different motif-finding methods for clustering and comparison with a reference motif database. It is tailored for regulatory motif detection, however it allows for substantial amount of configuration regarding sequence background, motif database and parameters for motif-finding methods.
*Availability:* The method is available online as a webserver at: http://bioputer.mimuw.edu.pl/software/mmf/. In addition, the source code is released on a GNU General Public License

    The EM Algorithm and the Rise of Computational Biology

    Get PDF
    In the past decade computational biology has grown from a cottage industry with a handful of researchers to an attractive interdisciplinary field, catching the attention and imagination of many quantitatively-minded scientists. Of interest to us is the key role played by the EM algorithm during this transformation. We survey the use of the EM algorithm in a few important computational biology problems surrounding the "central dogma"; of molecular biology: from DNA to RNA and then to proteins. Topics of this article include sequence motif discovery, protein sequence alignment, population genetics, evolutionary models and mRNA expression microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS312 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Motif Discovery through Predictive Modeling of Gene Regulation

    Full text link
    We present MEDUSA, an integrative method for learning motif models of transcription factor binding sites by incorporating promoter sequence and gene expression data. We use a modern large-margin machine learning approach, based on boosting, to enable feature selection from the high-dimensional search space of candidate binding sequences while avoiding overfitting. At each iteration of the algorithm, MEDUSA builds a motif model whose presence in the promoter region of a gene, coupled with activity of a regulator in an experiment, is predictive of differential expression. In this way, we learn motifs that are functional and predictive of regulatory response rather than motifs that are simply overrepresented in promoter sequences. Moreover, MEDUSA produces a model of the transcriptional control logic that can predict the expression of any gene in the organism, given the sequence of the promoter region of the target gene and the expression state of a set of known or putative transcription factors and signaling molecules. Each motif model is either a kk-length sequence, a dimer, or a PSSM that is built by agglomerative probabilistic clustering of sequences with similar boosting loss. By applying MEDUSA to a set of environmental stress response expression data in yeast, we learn motifs whose ability to predict differential expression of target genes outperforms motifs from the TRANSFAC dataset and from a previously published candidate set of PSSMs. We also show that MEDUSA retrieves many experimentally confirmed binding sites associated with environmental stress response from the literature.Comment: RECOMB 200
    • …
    corecore