35,346 research outputs found

    Wireless Software Synchronization of Multiple Distributed Cameras

    Full text link
    We present a method for precisely time-synchronizing the capture of image sequences from a collection of smartphone cameras connected over WiFi. Our method is entirely software-based, has only modest hardware requirements, and achieves an accuracy of less than 250 microseconds on unmodified commodity hardware. It does not use image content and synchronizes cameras prior to capture. The algorithm operates in two stages. In the first stage, we designate one device as the leader and synchronize each client device's clock to it by estimating network delay. Once clocks are synchronized, the second stage initiates continuous image streaming, estimates the relative phase of image timestamps between each client and the leader, and shifts the streams into alignment. We quantitatively validate our results on a multi-camera rig imaging a high-precision LED array and qualitatively demonstrate significant improvements to multi-view stereo depth estimation and stitching of dynamic scenes. We release as open source 'libsoftwaresync', an Android implementation of our system, to inspire new types of collective capture applications.Comment: Main: 9 pages, 10 figures. Supplemental: 3 pages, 5 figure

    Information theoretical study of cross-talk mediated signal transduction in MAPK pathways

    Full text link
    Biochemical networks related to similar functional pathways are often correlated due to cross-talk among the homologous proteins in the different networks. Using a stochastic framework, we address the functional significance of the cross-talk between two pathways. Our theoretical analysis on generic MAPK pathways reveals cross-talk is responsible for developing coordinated fluctuations between the pathways. The extent of correlation evaluated in terms of the information theoretic measure provides directionality to net information propagation. Stochastic time series and scattered plot suggest that the cross-talk generates synchronization within a cell as well as in a cellular population. Depending on the number of input and output, we identify signal integration and signal bifurcation motif that arise due to inter-pathway connectivity in the composite network. Analysis using partial information decomposition quantifies the net synergy in the information propagation through these branched pathways.Comment: Revised version, 17 pages, 5 figure

    Cooperative Adaptive Control for Cloud-Based Robotics

    Full text link
    This paper studies collaboration through the cloud in the context of cooperative adaptive control for robot manipulators. We first consider the case of multiple robots manipulating a common object through synchronous centralized update laws to identify unknown inertial parameters. Through this development, we introduce a notion of Collective Sufficient Richness, wherein parameter convergence can be enabled through teamwork in the group. The introduction of this property and the analysis of stable adaptive controllers that benefit from it constitute the main new contributions of this work. Building on this original example, we then consider decentralized update laws, time-varying network topologies, and the influence of communication delays on this process. Perhaps surprisingly, these nonidealized networked conditions inherit the same benefits of convergence being determined through collective effects for the group. Simple simulations of a planar manipulator identifying an unknown load are provided to illustrate the central idea and benefits of Collective Sufficient Richness.Comment: ICRA 201

    A component-oriented programming framework for developing embedded mobile robot software using PECOS model

    Get PDF
    A practical framework for component-based software engineering of embedded real-time systems, particularly for autonomous mobile robot embedded software development using PECOS component model is proposed The main features of this framework are: (1) use graphical representation for components definition and composition; (2) target C language for optimal code generation with small micro-controller; and (3) does not requires run-time support except for real-time kernel. Real-time implementation indicates that, the PECOS component model together with the proposed framework is suitable for resource constrained embedded systems

    Distributed Simulation of Heterogeneous and Real-time Systems

    Get PDF
    This work describes a framework for distributed simulation of cyber-physical systems (CPS). Modern CPS comprise large numbers of heterogeneous components, typically designed in very different tools and languages that are not or not easily composeable. Evaluating such large systems requires tools that integrate all components in a systematic, well-defined manner. This work leverages existing frameworks to facilitate the integration offers validation by simulation. A framework for distributed simulation is the IEEE High-Level Architecture (HLA) compliant tool CERTI, which provides the infrastructure for co-simulation of models in various simulation environments as well as hardware components. We use CERTI in combination with Ptolemy II, an environment for modeling and simulating heterogeneous systems. In particular, we focus on models of a CPS, including the physical dynamics of a plant, the software that controls the plant, and the network that enables the communication between controllers. We describe the Ptolemy extensions for the interaction with HLA and demonstrate the approach on a flight control system simulation

    A mapping approach to synchronization in the "Zajfman trap": stability conditions and the synchronization mechanism

    Get PDF
    We present a two particle model to explain the mechanism that stabilizes a bunch of positively charged ions in an "ion trap resonator" [Pedersen etal, Phys. Rev. Lett. 87 (2001) 055001]. The model decomposes the motion of the two ions into two mappings for the free motion in different parts of the trap and one for a compressing momentum kick. The ions' interaction is modelled by a time delay, which then changes the balance between adjacent momentum kicks. Through these mappings we identify the microscopic process that is responsible for synchronization and give the conditions for that regime.Comment: 12 pages, 9 figures; submitted to Phys Rev
    • 

    corecore