
A Component-Oriented Programming Framework for Developing Embedded
Mobile Robot Software using PECOS Model

Dayang Norhayati Abang Jawawi, Safaai
Deris

Department of Software Engineering
Faculty of Computer Science & Information System

Universiti Teknologi Malaysia
81310 Johor Bahru, Malaysia

dayang@fsksm.utm.my

 Rosbi Mamat
Department of Mechatronics & Robotics Engineering

Faculty of Electrical Engineering
 Universiti Teknologi Malaysia
81310 Johor Bahru, Malaysia

Abstract

A practical framework for component-based
software engineering of embedded real-time systems,
particularly for autonomous mobile robot embedded
software development using PECOS component model
is proposed The main features of this framework are:
(1) use graphical representation for components
definition and composition; (2) target C language for
optimal code generation with small micro-controller;
and (3) does not requires run-time support except for
real-time kernel. Real-time implementation indicates
that, the PECOS component model together with the
proposed framework is suitable for resource
constrained embedded systems.

1. Introduction

The promises of component-based software
engineering (CBSE) to increase software productivity,
improve software quality, and decrease the costs of
software development have driven the trend of
software development from building software from
scratch to component-based software development
approach.

In the domain of embedded real-time (ERT)
systems, CBSE is envisioned to bring a number of
advantages such as faster development times at
reasonable costs, ensuring business success of ERT
system developers with the ability to develop and port
software quickly, and developing more complex
software through reuse of existing components.

Industrial component technologies currently
available such as OMG’s CORBA Component Model
(CCM), Microsoft’s (D)COM/COM+, .NET, SUN
Microsystems’ JavaBeans and Enterprise JavaBeans,

are generally complex, require large resources such as
memory and computation power, and are platform
dependent [1] [2]. Furthermore, they do not address the
non-functional properties such as how much memory it
consumes and timing constraints which are important
in ERT systems.

Consequently, a number of component models such
as ReFlex [3], PBO [4], Rubus [5], Koala [6] and
PErvasive COmponent Systems (PECOS) [7], have
been developed to address requirements of ERT
software. Evaluation of these component models
against the industrial requirements of heavy vehicle
sector shows that PECOS is the most complete
component technology with good support for industrial
requirements [8].

PECOS component model was originally developed
for field device systems and some supporting tools
such as Component Composition (CoCo) description
language for specifying components, code generator
for generating Java/C++ code skeletons from CoCo
and runtime environment (RTE) which interfaces
generated codes to the real-time operating system [9].
However, many of these tools are incomplete and
information on the RTE is not publicly accessible as it
is a proprietary of the ABB Company [10].

Adopting PECOS for other application and platform
requires porting the RTE, which can be difficult
without the information. Thus, a simple framework for
CBSE of ERT systems, particularly for autonomous
mobile robot (AMR) embedded software development
using PECOS is proposed here. The main features of
this simple framework are: (1) use graphical
representation for components definition and
composition; (2) target C language for optimal code
generation with small micro-controller; and (3) does
not requires RTE except for real-time kernel.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/11777296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The layout of this paper is as follows. Section 2
describes the PECOS component model for which the
framework is proposed for. In Section 3 the proposed
framework is described and illustrates the
implementation of mobile robot software using the
framework. Section 4 presents some implementation
results of the framework on a real mobile robot.
Finally, the conclusion is presented in Section 5.

2. PECOS component model

PECOS component consists of two main parts, i.e.
the static structure model which describes the entities
included in the model, their features and properties;
and the execution model which defines the behavior of
the component execution.

2.1. Static structure model

There are three main entities in the PECOS model:
components, ports and connectors [11]. Components
are used to organize the computation and data into
parts that have well-defined semantics and behaviour.
A port is a reference to data that can be read and
written by a component and enables a component to be
connected to another component through a connector.
Data passed over the port is specified with name, type,
range and direction (in, out or inout). Only compatible
ports can be connected with connectors.

Components can be any of three types: active,
passive or event component. Active components have
their own thread of control; passive components do not
have their own thread of control; and an event
component is a component that is triggered by event.

In PECOS components can be hierarchically built
from other subcomponents. A component which
contains subcomponents or children is called a
composite component or a parent component, and
these subcomponents are not visible outside the
composite component. A component without
subcomponents is called a leaf component.

 A property bundle which describes the
nonfunctional aspects such as timing or memory usage
is associated with this static structure of component.

The components composition using PECOS static
structural model is performed by connecting the
compatible ports between components.

Figure 1 illustrates composition of four components
in PECOS for a motor speed control application.
MotorSpeedControl is a composite component with
three subcomponents, i.e. PI, Encoder, and Motor. Two
connections in the composition are connection between
output port speed to input port actualSpeed and

connection between output port controlSignal and input
port signal.

Figure 1 also shows two active components:
MotorSpeedControl and PI marked with “ ” at the
upper right corner, and two passive components:
Encoder and Motor.

MotorSpeedControl

PI

actualSpeed

controlSignal

Encoder
speed

Motor
signal

Figure 1. PECOS structure model for a motor

speed control application

2.2. Execution model

There are two different behaviors associated with

active and event components: execution behavior and
synchronization behavior. Execution behavior
determines the action that is performed when the
component is executed while the synchronization
behavior is responsible for synchronizing the data
space of the active or event component with that of the
parent [11].

In PECOS data synchronization between two
connected active or event components’ ports, is
required to assure that data cannot get corrupted due to
two simultaneous write operations from components in
different thread. To solve this data synchronization
problem, every active and event component is
equipped with its own private data space where the
data can be updated independently by the component.
At specific intervals, this private data space is then
synchronized its parent or composite component.

The execution behavior is based on the following
runtime rules [11]:
• The behavior of passive component is executed in

the thread of its parent component.
• Synchronization behavior for active and event

components is executed in the thread of the parent
component.

• Active and event components execute their own
execution behavior in their own thread of control.

• Every composite component has to provide a
schedule for its children.

2.3. Original PECOS implementation
framework in AMR domain

The original framework for implementation of

PECOS components has some limitation with respect
to our needs for development of ERT software for
AMR systems. Some of these limitations include: 1)
the use of CoCo language seems to be difficult for the
target audience as CoCo is almost a programming
language by itself; 2) targeting for Java or C++ may
not be appropriate for small microcontrollers with
limited resources and Java and C++ supports may not
be available for those microcontrollers; and 3) the RTE
is difficult to develop since information on the RTE is
not publicly accessible and it is a proprietary of the
ABB Company.

Some of the results from component-based reuse
works are hard to reuse because the solution is not
coherent and simple to be used by the mechatronics
and robotics engineers which are not from software
engineering or computer science background [12]. In
order to be widely accepted by robotic community, a
solution for coping with systems complexity problem
and software reuse for AMR should at least fulfill the
following requirements [13]:
i. Embeddable and self-contained. Typically, the

AMR software or firmware is embedded in the
on-board controller. A self-contained AMR
system requires on-board computation and the
system is typically constrained by limited
processing power and memories.

ii. Modular or component-based software.
Component modularity is to provide artifact to be
reused that contain domain knowledge from
different disciplines.

iii. Portable across different platform. Platform-
independent where the component
implementation does not depends on hardware,
Real-Time Operating System (RTOS) or
communications protocol.

iv. Predictable real-time performance. The
abilities to predict and analyze timing are key
requirements for AMR system.

When adapting existing component models into the

AMR software, there are a number of requirements,
resource constraints and current implementation
practices which must be considered. These
considerations include:
i. Embedded constraints:

• Limited power – battery operated, 8 or 16-bit
processing power.

• Limited memory – ROM 128K and RAM 64K.

ii. Real-time requirements
• Support for multi-tasking is required.
• Support high-level analysis of timing behavior.

iii. AMR requirements
• Support for hybrid deliberate layered architecture

of robot software.
• Variation point of software reuse component for

different robot applications.

It is assume that the AMR software developers are not
from software engineering field, and have limited
background in software engineering and real-time
systems.

3. A New framework for PECOS

This new framework was originally intended for

development of ERT software for Autonomous Mobile
Robot (AMR). The target audience is the mechatronic
and robotics researchers with are not from software
engineering background and do not have extensive
programming experience. However, experience shows
that the new framework is generally suitable for
developing reactive embedded systems which typically
use 8-bit or 16-bit microcontrollers with memory
constraints and developed with C language.

To address the above limitations, a new framework
which is called Component-Oriented Programming
(COP) framework is proposed for implementing the
PECOS component model manually in resource
constrained embedded systems.

In this framework, instead of using the CoCo
language, graphical representation of components is
used for components definition and composition.
Currently, codes have to be written manually from this
graphical representation. The graphical composition
environment and code generation tools based on the
graphical representation currently are still being
developed. The framework describes here is based on
manual creation of codes guided with the code
templates proposed in the COP framework.

The COP framework is targeted for C language,
since, optimized C compilers are available for most
micro-controllers, and C is portable across many
platforms. Furthermore, C is a familiar language and
has been use extensively by the target audience.

The dependency of PECOS model to RTE
deployment model will be replaced by two abstraction
layers in the proposed COP framework. Figure 2
shows how the component-based software is composed
using the modified PECOS model interfaced with the
RTOS, micro-controller and robot hardware using

hardware abstraction layer and RTOS abstraction
layer.

Component-Based Software Systems

Component1Component3

Component4

Component5 Component2

Hardware AL

 Controller
Board

RTOS AL

RTOSRobot
Hardware

Figure 2. Hardware and RTOS abstraction
layers of the proposed COP framework

3.1. Component engineering

Component engineering concerned with the analysis

of domains and development of generic and domain-
specific reusable components. Based on patterns
analysis in domain of AMR systems, common
components are identified and the specifications of the
components are documented in graphical blocks form,
which are further translated manually to C source
codes and stored in repository for use in the
application engineering stage.

Figure 3 shows a generic component named PID
documented in graphical block form. The input ports
and output ports, and their associated types and range
of values are defined in the block. Each port is
numbered accordingly for easy reference. Arrows on
the ports indicate the direction or whether they are
inports (IP00-IP02) or outports (OP00). Bidirectional
ports are not allowed in this framework. The Period
and Priority fields are timing specifications for active
component only, usually determined in the application
engineering stage. Not shown in the block is the worst
case execution time (WCET) of the component.

PID

Set Value: 0-5000

Current Value: 0-5000

Control Signal: 0-5000PID Settings:
[Kc, (0.01..99.99)
Ti, Td, Ts (all in ms)]

IP00

IP02

IP01 OP00

Period Priority

Figure 3. A PID component documented in

block form

The generic interface implementation for the PID

component in C is as follows:

typedef struct
{

int IP00; // set value(0-5000)
int IP01; // current value(0-5000)

 int IP02[4]; // array of PID const
 // [Kc Ti Td Ts]
 int OP00; // control signal(0-5000)
} INTERFPID;

The code body for an active component consists of

three main parts: initialization part, execution part, and
synchronization part. In the passive components, the
synchronization part is not required.

The initialization part is responsible for component
initialization, and in the case of active component it
calls real-time kernel to create the thread or task for the
component with the defined Period and Priority.

The execution part is the main component behavior
while the synchronization part updates the data
between inner ports and outer ports as defined by
PECOS component execution model.

Composite components can be built by
hierarchically composing a number of subcomponents
and stored in the repository for later use.

Figure 4 shows a generic composite component
named MotorControl built from three passive
subcomponents: Encoder, PID and Motor. The code
body for the composite component is still consists of
the above three main parts. On top of this, the
composite component is responsible for calling the
initialization and synchronization parts of its child or
sub-components.

MotorControl

PID

IP00

IP02

IP01 OP00
Motor

IP00

IP01

Set speed:
0..5000

IP00

IP01

IP02

OP00

Encoder

OP00

Direction:
1- forwad 0- stop
-1- reverse

Period Priority

Current
speed:
0..5000

PID Settings:
[Kc, Ti, Td, Ts]

Figure 4. MotorControl composite component

3.2. Application engineering

Application engineering which is also called
component-based software development (CBD),
involves developing applications using software
components previously developed. A design of simple
AMR embedded software will be used to illustrate the
steps involve in the application engineering using the
COP framework.

The major steps involve in application engineering
are: identification of required components,
composition of components, scheduling analysis and
assigning the period and priority of components, and
codes writing.

 Based on the requirements and patterns analysis,
the required components are identified and composed
by connecting the compatible ports. Figure 5 shows a
block diagram composition of a mobile robot software,
which consists of six leaf components and five
composite components shown by blocks with shadow.
Components without period and priority fields are
passive components.

Sometimes, the concrete components which are
application-specific need to be developed from the
generic components previously created. For examples
in Figure 5, motorctrl_right and motorctrl_left
components are concrete components developed from
the MotorControl component. In this framework,
connections of constants to compatible ports are
allowed. This is shown in Figure 5 by the connections

of constants to input port (IP01) of motorctrl_right
and motorctrl_left components.

Once the composition is completed, the next step is
to allocate property bundles value such as period and
priority for active components using the WCET and
some scheduling theory. Rate Monotonic Analysis
(RMA) [12] theory is mainly used to allocate priority
in this framework.

The result of these steps is the creation of a
configuration file pecos_cfg.h for inclusion in the
main program. This file specifies the components to
be included in the project and periods of execution and
priorities of active components. The effect of this file
is to include only the required components source
codes in the final code and to configure periods and
priorities of active components for the real-time kernel
use. The code as follows shows a fragment of the
configuration definitions in the pecos_cfg.h file.

MobileRobot

DistanceSensor

BatterySensor

motorctrl_right

motorctrl_left

manrobotintf

IR Proximity

OP00

OP01

OP02

OP03

[1000 20 0 50]

IP00
50 ms 6

IP01

IP02

OP00

IP00

IP01

IP02

IP03

Subsumption

IP00

IP01

IP02

IP03

IP04

IP05

IP06

IP07

IP08

IP09

400ms 7

OP03

OP02

OP01

OP00

OP04

[1000 20 0 50]

IP00
50 ms 5

IP01

IP02

OP00

 500ms 15

400ms 1

OP00

OP00

Cruise
400 13

IP00
OP00

OP01

FindWall
400 11

IP00
OP00

OP01

FollowWall
400 10

IP00

IP01

OP00

OP01

Avoid
400 9

IP00 OP00

OP01IP01

Figure 5. A mobile robot composition

// ******** CONFIG PECOS COMPONENTS :
// REQUIRE (1) or NOTREQUIRE (0)

#define COMP_MOTOR_REQ 1
#define COMP_IRPROX_REQ 1
#define COMP_DISTSENSOR_REQ 1
#define COMP_BATTSENSOR_REQ 1
#define COMP_SUBSUMPTION_REQ 1
#define COMP_BEHAVIOR_BASED_CTRL_REQ 1
#define COMP_MANROBOT_INTRF_REQ 1
#define COMP_MOTOR_CTRL_REQ 1

// ******** CONFIG REAL-TIME PARAMETERS FOR
ACTIVE COMPONENTS ********
//-- MANROBOTINTF
#define MRI_PERIOD 500
#define MRI_PRIO 15

//-- MOTORCTRL_RIGHT
#define MOTORCTRL_RIGHT_PERIOD 50
#define MOTORCTRL_RIGHT_PRIO 5
 :

The connections between the compatible input
ports and output ports are achieved by assignments of
the data defined by the components interface. For
example the following code shows how connection
between the output ports of Avoid component and the
input ports of IRProximity component are made:

//-- Connect all inports to outports
Avoid.IP00 = IRProximity.OP00;
Avoid.IP01 = IRProximity.OP01;

As shown in Figure 5, the top level component in

this composition is the MobileRobot component which
has the period of execution of 400 ms and priority of 1,
i.e. the highest priority. Thus, the main program for
this composition is the execution behavior of
MobileRobot component as already discussed in
Section 3.1. The template for this main file is shown
in Figure 6.

4. Implementation Results

Following the framework described in Section 3 and
PECOS component definitions, the autonomous
mobile robot software composed as shown in Figure 5
was implemented on a real robot with behavior-based
intelligence system. The target board consists of a 16-
bit AMD188ES microcontroller with 64Kb ROM and
128Kb RAM. The software tools used for the software
development are Paradigm C compiler [14] for
generating ROMable code and µC/OS-II real-time
kernel [15] for multitasking support. This C codes is
about 5000 lines of codes not including comments and
blank lines. The total machine code size for the
resulting application is about 21Kb with RAM usage
of about 15Kb. This indicates that, the PECOS

component model together with the proposed
framework can generate application with minimal
memories requirements, suitable for other resource
constrained embedded systems. The proposed
hardware abstraction layer and the RTOS abstraction
layer enable the development of platform-independent
components.

#include "pecos_cfg.h"
#include "pecos.h"

// TOP LEVEl COMPONENT
void MobileRobot (void* data) {
/****** INITIALIZATION PART ******/
 //-- initialize all child components
 //-- all ACTIVE tasks will be created
 INITmanrobotintf();
 INITmotorctrl_right();
 INITmotorctrl_left();
 :etc
 for (;;)
/****** EXECUTION PART ******/
 //-- Execute all passive components
 //-- Active components already executed
 EXECIRProximity();
 :etc
/****** SYNCHRONIZATION PART ******/
 //-- Synchronous all inports & outports
 SYNCmanrobotintf();
 :etc
//-- Connect all inports to outports
 Avoid.IP00 = IRProximity.OP00;
 Avoid.IP01 = IRProximity.OP01;
 Subsumption.IP00 = Avoid.OP00;
 Subsumption.IP01[0] = Avoid.OP01[0];
 :etc
//-- call RTK to create periodic execution
 OSTimeDelay (MOBILEROBOT_PERIOD);
}
void main(void) {
 //-- initialize hardware dependent parts
 //-- initialize Real-time kernel
 //-- create MobileRobot task
 //-- start the Real-time kernel
 while (1) ; // run endlessly
}

Figure 6. Code fragments for the main
program of the mobile robot composition

5. Conclusions and Future Works

A new COP framework was proposed to better

support embedded resource-constrained AMR
components integration and composition. The main
features of this framework are: (1) use graphical
representation for components definition and
composition; (2) target C language for optimal code
generation with small micro-controller; and (3) does
not requires RTE except for real-time kernel.

The component engineering and application
engineering aspects of the framework were described
and discussed based on a real example of a mobile
robot software development. Real-time implementation
indicate that, the PECOS component model together
with the COP framework can generate application
code with minimal memories requirements, suitable for
other resource constrained embedded systems.

The proposed COP framework enables the idea in
PECOS to be implemented optimally without
depending on any support tools and proprietary run-
time environment from the original PECOS project.
Currently, works are in progress in providing a
graphical composition environment and code
generation tools based on the PECOS component
blocks to automate the process thus ease the CBD for
robotics software developer.

6. References

[1] I. Crnkovic, “Component-based Approach for
Embedded Systems”, Ninth International Workshop on
Component-oriented Programming, Session 4 – Application
of CBSE, Oslo, June 2004.

[2] U. Rastofer, and F. Bellosa, “Component-based
Software Engineering for Distributed Embedded Real-time
Systems”, IEE Proceeding- Software, 148(3). 2001, pp. 99-
103.

[3] A. Wall, “Architectural Modeling and Analysis of
Complex Real-Time Systems”, Phd Thesis of Mälardalen
University, September 2003.

[4] D.B. Stewart, R. A. Volpe, and P. K. Khosla, “Design
of Dynamically Reconfigurable Real-time Software Using
Port-Based Objects”, IEEE Transaction on Software
Engineering. 23(12), 1997, pp. 759 –776.

[5] Articus Systems at www.arcticus-systems.com/

[6] R. Ommering, F. Linden, J. Kramer, and J. Magee,
“The Koala Component Model for Consumer Electronics
Software”, IEEE Computer. 33(3), 2000, pp.78 –85.

[7] Nierstrasz, O. et. al., “A Component Model for Field
Devices”, Proceedings First International IFIP/ACM
Working Conference on Component Deployment, Springer-
Verlag Heidelberg Volume 2370, Berlin, Germany, 20-21
June 2002, pp. 200-209.

[8] A. Möller, Åkerholm M., Fredriksson J., Nolin M.,
“Evaluation of Component Technologies with Respect to
Industrial Requirements”, Proceedings of the 30th
EUROMICRO Conference on Component-Based Software
Engineering Track, Rennes, France, August 2004, pp. 56-63.

[9] R. Wuyts, S. Ducasse and O. Nierstrasz. “A Data-
centric Approach to Composing Embedded, Real-time
Software Components”, The Journal of Systems and
Software, 74, 2005, pp. 25-34.

[10] B. Bouyssounouse, J. Sifakis, “Embedded Systems
Design: The ARTIST Roadmap for Research and
Development”, Lecture Notes in Computer Science, Volume
3436 / 2005, Springer-Verlag GmbH, 2005, pp. 160-194.

[11] T. Genssler et. al., “PECOS in a Nutshell”, Technical
Report, PECOS Project, September 2002.

[12] A. Orebäck, “A Component Framework for
Autonomous Mobile Robots”. Phd Thesis of KTH Stockholm,
2004.

[13] F. Pont, and R. Siegwart, “A Real-Time Software
Framework for Indoor Navigation”, Proceedings of the
IEEE/RSJ Intenational Conference on Intelligent Robots and
Systems (IROS), Edmonton, Canada, August 2005, pp. 2085 -
2090.

[14] Paradigm Systems, Paradigm C++ Reference Manual
Version 5.0, Endwell, 2000.

[15] Labrosse, J. J.. MicroC/OS-II The Real-Time Kernel,
2nd edition, R&D Books, USA , 1999.

