42,194 research outputs found

    On the Performance of Turbo Signal Recovery with Partial DFT Sensing Matrices

    Full text link
    This letter is on the performance of the turbo signal recovery (TSR) algorithm for partial discrete Fourier transform (DFT) matrices based compressed sensing. Based on state evolution analysis, we prove that TSR with a partial DFT sensing matrix outperforms the well-known approximate message passing (AMP) algorithm with an independent identically distributed (IID) sensing matrix.Comment: to appear in IEEE Signal Processing Letter

    Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula

    Full text link
    Factorizing low-rank matrices has many applications in machine learning and statistics. For probabilistic models in the Bayes optimal setting, a general expression for the mutual information has been proposed using heuristic statistical physics computations, and proven in few specific cases. Here, we show how to rigorously prove the conjectured formula for the symmetric rank-one case. This allows to express the minimal mean-square-error and to characterize the detectability phase transitions in a large set of estimation problems ranging from community detection to sparse PCA. We also show that for a large set of parameters, an iterative algorithm called approximate message-passing is Bayes optimal. There exists, however, a gap between what currently known polynomial algorithms can do and what is expected information theoretically. Additionally, the proof technique has an interest of its own and exploits three essential ingredients: the interpolation method introduced in statistical physics by Guerra, the analysis of the approximate message-passing algorithm and the theory of spatial coupling and threshold saturation in coding. Our approach is generic and applicable to other open problems in statistical estimation where heuristic statistical physics predictions are available

    Asymptotic Analysis of Complex LASSO via Complex Approximate Message Passing (CAMP)

    Full text link
    Recovering a sparse signal from an undersampled set of random linear measurements is the main problem of interest in compressed sensing. In this paper, we consider the case where both the signal and the measurements are complex. We study the popular reconstruction method of â„“1\ell_1-regularized least squares or LASSO. While several studies have shown that the LASSO algorithm offers desirable solutions under certain conditions, the precise asymptotic performance of this algorithm in the complex setting is not yet known. In this paper, we extend the approximate message passing (AMP) algorithm to the complex signals and measurements and obtain the complex approximate message passing algorithm (CAMP). We then generalize the state evolution framework recently introduced for the analysis of AMP, to the complex setting. Using the state evolution, we derive accurate formulas for the phase transition and noise sensitivity of both LASSO and CAMP

    Dynamical Functional Theory for Compressed Sensing

    Get PDF
    We introduce a theoretical approach for designing generalizations of the approximate message passing (AMP) algorithm for compressed sensing which are valid for large observation matrices that are drawn from an invariant random matrix ensemble. By design, the fixed points of the algorithm obey the Thouless-Anderson-Palmer (TAP) equations corresponding to the ensemble. Using a dynamical functional approach we are able to derive an effective stochastic process for the marginal statistics of a single component of the dynamics. This allows us to design memory terms in the algorithm in such a way that the resulting fields become Gaussian random variables allowing for an explicit analysis. The asymptotic statistics of these fields are consistent with the replica ansatz of the compressed sensing problem.Comment: 5 pages, accepted for ISIT 201
    • …
    corecore