3 research outputs found

    System analysis for the Huntsville Operational Support Center distributed computer system

    Get PDF
    The Huntsville Operations Support Center (HOSC) is a distributed computer system used to provide real time data acquisition, analysis and display during NASA space missions and to perform simulation and study activities during non-mission times. The primary purpose is to provide a HOSC system simulation model that is used to investigate the effects of various HOSC system configurations. Such a model would be valuable in planning the future growth of HOSC and in ascertaining the effects of data rate variations, update table broadcasting and smart display terminal data requirements on the HOSC HYPERchannel network system. A simulation model was developed in PASCAL and results of the simulation model for various system configuraions were obtained. A tutorial of the model is presented and the results of simulation runs are presented. Some very high data rate situations were simulated to observe the effects of the HYPERchannel switch over from contention to priority mode under high channel loading

    System Analysis for the Huntsville Operation Support Center, Distributed Computer System

    Get PDF
    HOSC as a distributed computing system, is responsible for data acquisition and analysis during Space Shuttle operations. HOSC also provides computing services for Marshall Space Flight Center's nonmission activities. As mission and nonmission activities change, so do the support functions of HOSC change, demonstrating the need for some method of simulating activity at HOSC in various configurations. The simulation developed in this work primarily models the HYPERchannel network. The model simulates the activity of a steady state network, reporting statistics such as, transmitted bits, collision statistics, frame sequences transmitted, and average message delay. These statistics are used to evaluate such performance indicators as throughout, utilization, and delay. Thus the overall performance of the network is evaluated, as well as predicting possible overload conditions

    Investigation of the consumer electronics bus

    Get PDF
    The objectives of this dissertation are to investigate the performance of the Consumer Electronics Bus (CEBus) and to develop a theoretical formulation of the Carrier Sense Multiple Access with Contention Detection and Contention Resolution (CSMA/CDCR) with three priority classes protocol utilized by the CEBus A new priority channel assigned multiple access with embedded priority resolution (PAMA/PR) theoretical model is formulated. It incorporates the main features of the CEBus with three priority classes. The analytical results for throughput and delay obtained by this formulation were compared to simulation experiments. A close agreement has been found thus validated both theory and simulation models Moreover, the performance of the CEBus implemented with two physical media, the power line (PL) and twisted pair (TP) communication lines, was investigated by measuring message and channel throughputs and mean packet and message delays. The router was modeled as a node which can handle three priority levels simultaneously. Satisfactory performance was obtained. Finally, a gateway joining the CEBus to ISDN was designed and its perfor-mance was evaluated. This gateway provides access to ISDN-based services to the CEBus. The ISDN and CEBus system network architecture, gateway wiring, and data and signaling interface between the CEBus and ISDN were designed, analyzed, and discussed. Again, satisfactory performance was found
    corecore