173 research outputs found

    Analysis of a geometrical multiscale blood flow model based on the coupling of ODEs and hyperbolic PDEs

    Get PDF
    For the numerical simulation of the circulatory system, geometrical multiscale models based on the coupling of systems of differential equations with different spatial dimensions are becoming common practice. In this paper we address the mathematical analysis of a coupled multiscale system involving a zero-dimensional (0D) model, describing the global characteristics of the circulatory system, and a one-dimensional (1D) model giving the pressure propagation along a straight vessel. We provide a local-in-time existence and uniqueness of classical solutions for this coupled problem. To this purpose we reformulate the original problem in a general abstract framework by splitting it into subproblems (the 0D system of ODEs and the 1D hyperbolic system of PDEs); then we use fixed-point techniques. The abstract result is then applied to the original blood flow case under very realistic hypotheses on the data

    Newtonian Flow in Converging-Diverging Capillaries

    Full text link
    The one-dimensional Navier-Stokes equations are used to derive analytical expressions for the relation between pressure and volumetric flow rate in capillaries of five different converging-diverging axisymmetric geometries for Newtonian fluids. The results are compared to previously-derived expressions for the same geometries using the lubrication approximation. The results of the one-dimensional Navier-Stokes are identical to those obtained from the lubrication approximation within a non-dimensional numerical factor. The derived flow expressions have also been validated by comparison to numerical solutions obtained from discretization with numerical integration. Moreover, they have been certified by testing the convergence of solutions as the converging-diverging geometries approach the limiting straight geometry.Comment: 23 pages, 5 figures, 1 table. This is an extended and improved version. arXiv admin note: substantial text overlap with arXiv:1006.151

    One-Dimensional Navier-Stokes Finite Element Flow Model

    Full text link
    This technical report documents the theoretical, computational, and practical aspects of the one-dimensional Navier-Stokes finite element flow model. The document is particularly useful to those who are interested in implementing, validating and utilizing this relatively-simple and widely-used model.Comment: 46 pages, 1 tabl

    Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods

    Full text link
    In this work, we consider two kinds of model reduction techniques to simulate blood flow through the largest systemic arteries, where a stenosis is located in a peripheral artery i.e. in an artery that is located far away from the heart. For our simulations we place the stenosis in one of the tibial arteries belonging to the right lower leg (right post tibial artery). The model reduction techniques that are used are on the one hand dimensionally reduced models (1-D and 0-D models, the so-called mixed-dimension model) and on the other hand surrogate models produced by kernel methods. Both methods are combined in such a way that the mixed-dimension models yield training data for the surrogate model, where the surrogate model is parametrised by the degree of narrowing of the peripheral stenosis. By means of a well-trained surrogate model, we show that simulation data can be reproduced with a satisfactory accuracy and that parameter optimisation or state estimation problems can be solved in a very efficient way. Furthermore it is demonstrated that a surrogate model enables us to present after a very short simulation time the impact of a varying degree of stenosis on blood flow, obtaining a speedup of several orders over the full model

    Multiscale constitutive framework of 1D blood flow modeling: Asymptotic limits and numerical methods

    Full text link
    In this paper, a multiscale constitutive framework for one-dimensional blood flow modeling is presented and discussed. By analyzing the asymptotic limits of the proposed model, it is shown that different types of blood propagation phenomena in arteries and veins can be described through an appropriate choice of scaling parameters, which are related to distinct characterizations of the fluid-structure interaction mechanism (whether elastic or viscoelastic) that exist between vessel walls and blood flow. In these asymptotic limits, well-known blood flow models from the literature are recovered. Additionally, by analyzing the perturbation of the local elastic equilibrium of the system, a new viscoelastic blood flow model is derived. The proposed approach is highly flexible and suitable for studying the human cardiovascular system, which is composed of vessels with high morphological and mechanical variability. The resulting multiscale hyperbolic model of blood flow is solved using an asymptotic-preserving Implicit-Explicit Runge-Kutta Finite Volume method, which ensures the consistency of the numerical scheme with the different asymptotic limits of the mathematical model without affecting the choice of the time step by restrictions related to the smallness of the scaling parameters. Several numerical tests confirm the validity of the proposed methodology, including a case study investigating the hemodynamics of a thoracic aorta in the presence of a stent

    On the foundations of cancer modelling: selected topics, speculations, & perspectives

    Get PDF
    This paper presents a critical review of selected topics related to the modelling of cancer onset, evolution and growth, with the aim of illustrating, to a wide applied mathematical readership, some of the novel mathematical problems in the field. This review attempts to capture, from the appropriate literature, the main issues involved in the modelling of phenomena related to cancer dynamics at all scales which characterise this highly complex system: from the molecular scale up to that of tissue. The last part of the paper discusses the challenge of developing a mathematical biological theory of tumour onset and evolution
    corecore