16,234 research outputs found

    Clustering Complex Zeros of Triangular Systems of Polynomials

    Get PDF
    This paper gives the first algorithm for finding a set of natural ϵ\epsilon-clusters of complex zeros of a triangular system of polynomials within a given polybox in Cn\mathbb{C}^n, for any given ϵ>0\epsilon>0. Our algorithm is based on a recent near-optimal algorithm of Becker et al (2016) for clustering the complex roots of a univariate polynomial where the coefficients are represented by number oracles. Our algorithm is numeric, certified and based on subdivision. We implemented it and compared it with two well-known homotopy solvers on various triangular systems. Our solver always gives correct answers, is often faster than the homotopy solver that often gives correct answers, and sometimes faster than the one that gives sometimes correct results.Comment: Research report V6: description of the main algorithm update

    On isolation of singular zeros of multivariate analytic systems

    Full text link
    We give a separation bound for an isolated multiple root xx of a square multivariate analytic system ff satisfying that an operator deduced by adding Df(x)Df(x) and a projection of D2f(x)D^2f(x) in a direction of the kernel of Df(x)Df(x) is invertible. We prove that the deflation process applied on ff and this kind of roots terminates after only one iteration. When xx is only given approximately, we give a numerical criterion for isolating a cluster of zeros of ff near xx. We also propose a lower bound of the number of roots in the cluster.Comment: 17 page

    Robust EM algorithm for model-based curve clustering

    Full text link
    Model-based clustering approaches concern the paradigm of exploratory data analysis relying on the finite mixture model to automatically find a latent structure governing observed data. They are one of the most popular and successful approaches in cluster analysis. The mixture density estimation is generally performed by maximizing the observed-data log-likelihood by using the expectation-maximization (EM) algorithm. However, it is well-known that the EM algorithm initialization is crucial. In addition, the standard EM algorithm requires the number of clusters to be known a priori. Some solutions have been provided in [31, 12] for model-based clustering with Gaussian mixture models for multivariate data. In this paper we focus on model-based curve clustering approaches, when the data are curves rather than vectorial data, based on regression mixtures. We propose a new robust EM algorithm for clustering curves. We extend the model-based clustering approach presented in [31] for Gaussian mixture models, to the case of curve clustering by regression mixtures, including polynomial regression mixtures as well as spline or B-spline regressions mixtures. Our approach both handles the problem of initialization and the one of choosing the optimal number of clusters as the EM learning proceeds, rather than in a two-fold scheme. This is achieved by optimizing a penalized log-likelihood criterion. A simulation study confirms the potential benefit of the proposed algorithm in terms of robustness regarding initialization and funding the actual number of clusters.Comment: In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), 2013, Dallas, TX, US
    corecore