96 research outputs found

    Analysis of yawning behaviour in spontaneous expressions of drowsy drivers

    Get PDF
    Driver fatigue is one of the main causes of road accidents. It is essential to develop a reliable driver drowsiness detection system which can alert drivers without disturbing them and is robust to environmental changes. This paper explores yawning behaviour as a sign of drowsiness in spontaneous expressions of drowsy drivers in simulated driving scenarios. We analyse a labelled dataset of videos of sleep-deprived versus alert drivers and demonstrate the correlation between hand-over-face touches, face occlusions and yawning. We propose that face touches can be used as a novel cue in automated drowsiness detection alongside yawning and eye behaviour. Moreover, we present an automatic approach to detect yawning based on extracting geometric and appearance features of both mouth and eye regions. Our approach successfully detects both hand-covered and uncovered yawns with an accuracy of 95%. Ultimately, our goal is to use these results in designing a hybrid drowsiness-detection system

    Automated drowsiness detection for improved driving safety

    Get PDF
    Several approaches were proposed for the detection and prediction of drowsiness. The approaches can be categorized as estimating the fitness of duty, modeling the sleep-wake rhythms, measuring the vehicle based performance and online operator monitoring. Computer vision based online operator monitoring approach has become prominent due to its predictive ability of detecting drowsiness. Previous studies with this approach detect driver drowsiness primarily by making preassumptions about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here we employ machine learning to datamine actual human behavior during drowsiness episodes. Automatic classifiers for 30 facial actions from the Facial Action Coding system were developed using machine learning on a separate database of spontaneous expressions. These facial actions include blinking and yawn motions, as well as a number of other facial movements. In addition, head motion was collected through automatic eye tracking and an accelerometer. These measures were passed to learning-based classifiers such as Adaboost and multinomial ridge regression. The system was able to predict sleep and crash episodes during a driving computer game with 96% accuracy within subjects and above 90% accuracy across subjects. This is the highest prediction rate reported to date for detecting real drowsiness. Moreover, the analysis revealed new information about human behavior during drowsy drivin

    The effect of electronic word of mouth communication on purchase intention moderate by trust: a case online consumer of Bahawalpur Pakistan

    Get PDF
    The aim of this study is concerned with improving the previous research finding complete filling the research gaps and introducing the e-WOM on purchase intention and brand trust as a moderator between the e-WOM, and purchase intention an online user in Bahawalpur city Pakistan, therefore this study was a focus at linking the research gap of previous literature of past study based on individual awareness from the real-life experience. we collected data from the online user of the Bahawalpur Pakistan. In this study convenience sampling has been used to collect data and instruments of this study adopted from the previous study. The quantitative research methodology used to collect data, survey method was used to assemble data for this study, 300 questionnaire were distributed in Bahawalpur City due to the ease, reliability, and simplicity, effective recovery rate of 67% as a result 202 valid response was obtained for the effect of e-WOM on purchase intention and moderator analysis has been performed. Hypotheses of this research are analyzed by using Structural Equation Modeling (SEM) based on Partial Least Square (PLS). The result of this research is e-WOM significantly positive effect on purchase intention and moderator role of trust significantly affects the relationship between e-WOM, and purchase intention. The addition of brand trust in the model has contributed to the explanatory power, some studied was conduct on brand trust as a moderator and this study has contributed to the literature in this favor. significantly this study focused on current marketing research. Unlike past studies focused on western context, this study has extended the regional literature on e-WOM, and purchase intention to be intergrading in Bahawalpur Pakistan context. Lastly, future studies are recommended to examine the effect of trust in other countries allow for the comparison of the findings

    Active Vision-based Attention Monitoring System for Non-Distracted Driving

    Get PDF
    Inattentive driving is a key reason of road mishaps causing more deaths than speeding or drunk driving. Research efforts have been made to monitor drivers&amp;#x2019; attentional states and provide support to drivers. Both invasive and non-invasive methods have been applied to track driver&amp;#x2019;s attentional states, but most of these methods either use exclusive equipment which are costly or use sensors that cause discomfort. In this paper, a vision-based scheme is proposed for monitoring the attentional states of the drivers. The system comprises four major modules such as cue extraction and parameter estimation, monitoring and decision making, level of attention estimation, and alert system. The system estimates the attentional level and classifies the attentional states based on the percentage of eyelid closure over time (PERCLOS), the frequency of yawning and gaze direction. Various experiments were conducted with human participants to assess the performance of the suggested scheme, which demonstrates the system&amp;#x2019;s effectiveness with 92% accuracy.</p

    Video based detection of driver fatigue

    Get PDF
    This thesis addresses the problem of drowsy driver detection using computer vision techniques applied to the human face. Specifically we explore the possibility of discriminating drowsy from alert video segments using facial expressions automatically extracted from video. Several approaches were previously proposed for the detection and prediction of drowsiness. There has recently been increasing interest in computer vision approaches as it is a potentially promising approach due to its non-invasive nature for detecting drowsiness. Previous studies with vision based approaches detect driver drowsiness primarily by making pre-assumptions about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here we employ machine learning to explore, understand and exploit actual human behavior during drowsiness episodes. We have collected two datasets including facial and head movement measures. Head motion is collected through an accelerometer for the first dataset (UYAN-1) and an automatic video based head pose detector for the second dataset (UYAN-2). We use outputs of the automatic classifiers of the facial action coding system (FACS) for detecting drowsiness. These facial actions include blinking and yawn motions, as well as a number of other facial movements. These measures are passed to a learning-based classifier based on multinomial logistic regression. In UYAN-1 the system is able to predict sleep and crash episodes during a driving computer game with 0.98 performance area under the receiver operator characteristic curve for across subjects tests. This is the highest prediction rate reported to date for detecting real drowsiness. Moreover, the analysis reveals new information about human facial behavior during drowsy driving. In UYAN-2 fine discrimination of drowsy states are also explored on a separate dataset. The degree to which individual facial action units can predict the difference between moderately drowsy to acutely drowsy is studied. Signal processing techniques and machine learning methods are employed to build a person independent acute drowsiness detection system. Temporal dynamics are captured using a bank of temporal filters. Individual action unit predictive power is explored with an MLR based classifier. Best performing five action units have been determined for a person independent system. The system is able to obtain 0.96 performance of area under the receiver operator characteristic curve for a more challenging dataset with the combined features of the best performing 5 action units. Moreover the analysis reveals new markers for different levels of drowsiness

    Yawning as Therapy? The Potential of the Conditioned Yawn Reflex as a Novel Treatment for Insomnia Disorder

    Get PDF
    In 1986, Provine, the pioneer of yawning research wrote that ‘Yawning may have the dubious distinction of being the least understood, common human behaviour’ (p. 120); and so yawning remains some 40 years later, as something of a biological and social curiosity. However, this article examines contemporary scientific understanding of this age‐old conundrum, proposing not only that yawning is a universal component of sleep's normal stimulus control paradigm, but that the conditioned yawn reflex might be harnessed to treat insomnia disorder. The core features of yawning as a ubiquitous, involuntary, periodic and conditionable behaviour; its associated actions on arousal, biofeedback and selective attention, as well as thermoregulation and airway patency; and its potential to signal and promote sleep engagement, lead to the proposition that the conditioned yawn reflex as therapy (CYRaT) is a feasible and potentially effective novel therapeutic for sleep‐onset and sleep‐maintenance insomnia disorder. Much research is required to test this hypothesis, but the article describes preliminary protocols for the administration and testing of CYRaT that might be utilised for this purpose

    Machine Learning in Driver Drowsiness Detection: A Focus on HRV, EDA, and Eye Tracking

    Get PDF
    Drowsy driving continues to be a significant cause of road traffic accidents, necessi- tating the development of robust drowsiness detection systems. This research enhances our understanding of driver drowsiness by analyzing physiological indicators – heart rate variability (HRV), the percentage of eyelid closure over the pupil over time (PERCLOS), blink rate, blink percentage, and electrodermal activity (EDA) signals. Data was collected from 40 participants in a controlled scenario, with half of the group driving in a non- monotonous scenario and the other half in a monotonous scenario. Participant fatigue was assessed twice using the Fatigue Assessment Scale (FAS). The research developed three machine learning models: HRV-Based Model, EDA- Based Model, and Eye-Based Model, achieving accuracy rates of 98.28%, 96.32%, and 90% respectively. These models were trained on the aforementioned physiological data, and their effectiveness was evaluated against a range of advanced machine learning models including GRU, Transformers, Mogrifier LSTM, Momentum LSTM, Difference Target Propagation, and Decoupled Neural Interfaces Using Synthetic Gradients. The HRV-Based Model and EDA-Based Model demonstrated robust performance in classifying driver drowsiness. However, the Eye-Based Model had some difficulty accurately identifying instances of drowsiness, likely due to the imbalanced dataset and underrepre- sentation of certain fatigue states. The study duration, which was confined to 45 minutes, could have contributed to this imbalance, suggesting that longer data collection periods might yield more balanced datasets. The average fatigue scores obtained from the FAS before and after the experiment showed a relatively consistent level of reported fatigue among participants, highlighting the potential impact of external factors on fatigue levels. By integrating the outcomes of these individual models, each demonstrating strong performance, this research establishes a comprehensive and robust drowsiness detection system. The HRV-Based Model displayed remarkable accuracy, while the EDA-Based Model and the Eye-Based Model contributed valuable insights despite some limitations. The research highlights the necessity of further optimization, including more balanced data collection and investigation of individual and external factors impacting drowsiness. Despite the challenges, this work significantly contributes to the ongoing efforts to improve road safety by laying the foundation for effective real-time drowsiness detection systems and intervention methods

    The application of driving fatigue detection and monitoring technologies in transportation sector: A review

    Get PDF
    Driving fatigue is the leading cause of traffic accidents in many countries, prompting the development of a number of fatigue detection devices. This paper concisely reviews the existing fatigue detection system for transportation sectors. A rigorous systematic literature review (SLR) was utilized to find robust and high-potential material related to the research issue. According to the available literature research, many fatigue detection devices have been developed and commercialized, categorized into three groups based on the detection target's features: vehicle-based parameters, behaviour-based parameters and physiological-based parameters. However, currently available driver fatigue detection systems are divided into two categories: (i) very expensive systems that are limited to specific high-end automobile models and (ii) affordable alternatives for old and cheap vehicles that are not robust. Regardless of the physiological-based parameters' great accuracy in identifying driving fatigue, practically all available fatigue detection devices are classified as vehicle and driver behaviour-based parameters. As a result, this study looked into the use of physiological method in the future fatigue detection studies. The study's findings will help researchers, politicians, and practitioners create a system to significantly reduce road accidents and improve road safety
    corecore